Document # g0 |

ke dudiaii "=‘-s—g,g’:g,-m,_hhhﬁ’ﬁ"hlmﬁﬂm’l.;‘ﬁi 1 ______"_' -a!pl!ﬁﬂw-ﬁ't LT Y ‘MW:‘!‘*B!I!Q'H!i HERHES

e
e

=

Gt

LIl

Vs

S

AN

CeTL
e

£

L

RN

T S o 1 e e

B R A

DISK #

P

T C
-

LLly

. il

David T. Craig
736 Edgewater, Wichita, Kansas 67230
(316) 733-0914

® & & o ¢ © o © o © o o o o o
S

- -
- -
- -
- -
ol -
- -
- -
— -
- -
- -
- -
-— -
- -
- -
- -
- -
-— -
-~ -
- -
- -
-~ -
-~ -
- -
- -
- -
- -
- -
-~ -
- -
= -
- -
- -
- -
- -
- -
- -
- -
s -
- -
- -
- -
- -
- -
- -
poy -
P -
- put
-— ™
-— -
- -
- -
- -
P~ -
— -
- -
- -
ey -
- -
- =
- -
- —
- -
- -
- -
- -
- -
- -
- -
= -
- -
- -
- -
- -
- -
- -—
— -
- —
- -
- -
- -—
- -
- -
- -
- -
- -
- -
- -
P -
- -
- -
- =3
- -

R A A A A

6 == 4 ., &2 @&

..u

ST e e]

¢

Apple Lisa Personal Computer
1983 to 1985

0S Ref Manual
(Mar 1982)

David T. Craig ~ 736 Edgewater, Wichita, Kansas 67230 - (316) 733-0914

Apple Lisa Computer
1983 - 1985
LISA

Operating System

REFERENCE MANUAL

Bill Schottstaedt
Ext. 2379

Va+c: March ', ,QBZ'
fages: 112

1-Mar-82 Operating System Reference Manual Confidential

TABLE OF CONTENTS
INTRODUCTION & « + o o o o & o o » o s+ s o = » » » s o1
THE FILE SYSTEM « =« = o o s o = s o = s s s » ¢+ s ¢ ¢ 3

File System OVerview « s+ « + s s o o s ¢ = ¢ = » o« &
File System Calls .« « « » o s & ¢ » « « = = « » » 10

PROCESSES « ¢ v s o « = = & P)

Process Structure and Management « + + « o » « o o 32
Process System Calls » s o o o o« s = =« « « o « o o 37

MEMORY MANAGEMENT . & 2 = « =« o « o « o a v o o o o o 47

Memory Management OVEIVI@W « « » o o o s » o o o o 48
Memory Management System Calls + « o o « & » o « « 52

EXCEPTIONS AND EVENTS « + « « s « s » s o = o « 2 o o 63

EXCeptions « + v s » o s s s = o« » = s s = s » + o B4
E'\reﬂtso.....-.-..--.----.---68
'ﬁleSystemClock..--...--......-..69
Exception Management System Calls « » «» « 69
Event Management System Calls . « « = « « = « « « 76
Clocksystemca.lls............-..-34

SYSTEM CONFIGURATION AND STARTOP . . » = « « « « « - - 89

Sys tem Startup e+ % 8 & & 8 s + = 8 a2 = -- . s = « 90
sﬂlf‘diagﬂos L1CS o 4 5 ¢ &+ & = & & & s 4 2 4 v e @ S0
Customizing Your Systemw .« « = « « » o v o « » o & 91

A.PPENDIGS-...--....-..--.o--o-093

O'Peratiﬂg Sys:m Interface « « o s ¢ o s & ¢ ¢ o 2 94
Reserved Exception Names . . « « = + + o s + = « « o 106

Reserved Event TYP&S « + « « o« o o « » » o « « s = « 106
ETTOr COES « « = « = « o + = s « s« ¢« ¢ ¢ o« « « « » 107

l-Mar-82 Operating System Reference Manual Confidential

INTRCDUCTION

The Operating System is a single user system providing concurrent
processes, events, exceptions, device independent I/0 in a hierarchical
file system, and management of code and data segmentation. This manual
is incended for applications programmers who deal directly with the
Operacing System.

The Cperating System falls naturally into four categories: file
management, pProcess management, Memory management, and process
communication. In each of the four chapters describing these
portions of the Operating System, there 1s an overview of the subject
that explains the terms and concepts used in the system calls. The
system calls themselves are then described in some decail. A £ifth
chapter describes system startup procedures. The Appendices describe
the Operating System interface and error codes.

Page 1

1-Mar-82 Operating System Reference Mamyal Confidentcial

CHAPTER 1
THE FILE SYSTEM

Introduction « « 4 o o 4 4 v o ¢ ¢ o o o 8 o o
File Names . . . & & 4 « ¢« ¢ s o s o « o« s » &
The Working DiTector¥ .« « o o « o o « o & « &«
Devices . « « o 4+ 4 . o
The Volume Catalog .

»
.
.
.
»
.
.
Lol NN B B, W, - o

Labels . . . L L R R T T S S . . s
Logical and Physical End Of File . . = = . . .
Fue Mcgss - . L] L L] L] L . - - . - » - - . -
Pipes ® e * e ® F a4 & ¥ o s s & 8 b s &8 & = s
File Syﬂ:em Calls * 4 ¢ ¥ & % 4 & e & 8 a4 s @

MAKE FILE + « « « 2 2 v o o s o o o o o o

HAKE-PT.PE ® 2 &+ 0 3 e s s ® s s s v s &

RILL OBJECT '« + v o v o o s o o o o
Lom.ll....lll.......l.

INFODC.....!!O..II-...'.

opm..'hll“..l‘llllﬂlIl
CLOSE OBJECT v ¢ + 4 v o o o s o o o o o o &
READ DATA '« o o o o v o o s o s o o o o o s
WRITE DATA + « o « o o o = o o o o o o o o s
mmELlll.""..l......

WRITE LABEL &« + « v o « o « o o o o »

R PO e e e
WM RNODOWE N DL —~—~O

DEVIE CONTRDL - - L] L] - - - L . - - - L] . »

ALLOCATE . . v o o o Lo e .. 26
ComAa - - L] A - L] L] L - » * - L * L] . - - 25
TRWCAIE - - - - A . - - L - . - L - L L] * * 25
FLUSH . » - - . . L] - - . . . L] L] - L] * L] * 26
Sn—SAEn L] - . - L 2 * - * - L] . - L] . . . L] 27
SET_ WORKING DIR & 4 « o o o 4 o o s o o » o 28
GET WORKING DIR . v 4 « o v o o o o o o o+ o 2B
RESET wm - - - . - - - . L] - - L] . - - 29

GET_NEXT_ENTRY,
MOUNTl.v.ll".'..l‘..l'.30
UNMOUNT & 4 4 o o o s o o o o o a s o o« o 30

-
-
L]
[}
.
.
.
.
.
-
.
&

Page]

1=Mar=-82 Operating System Referemnce Manual Confidential

FILE QVERVIEW
INTRODUCTION

The File System provides device independent I/0, reliable storage

with access protection, uniform file naming conventions, and
configurable device drivers.

4 file is an uninterpreted stream of eight bit bytes. A file that

is stored on a block structured device resides in a catalog and has

a name. For each such file the catalog contains an entry describing

the file’s actributes including the length of the file, its position

on the disk, and the last backup copy date. Arbitrary application=~defined
attributes can be stored in an area called the file label.

Each file has two assocliated measures of length, the Logical End of
File (LEOF) and the Physical End of File (PEOF)}. The LEOF {s a
pointer to the last byte that has meaning to the application.

The PECF 1s a count of the mumber of blocks allocated to the

file. The pointar to the next byte to be read or written i{s called
the file marker.

To handle inpuc and cutput, applications do not need to know the
physical characteristics of a device. Applications that do, however,
can increase the 1/0 performance by causing file accesses on block
boundaries. Each Operating System call is synchronous in that the
I/0 requested {s performed before the call returns. The actual I/0,
however, is asynchronous aod is always performed in the coutext of an
Operating System process.

To reduce the impact of an error, the file system maintains a high
level of distributed, redundant information about the £iles on

stotage devices. Duplicate coples of critical information are stored in
differsnt forms and in different places on the media. All the files
are able to identify and describe themselves, and there are usually
several ways to recover lost information. The scavenger program is

abls to discover and reconstruct damaged directories from the
information stored with each file.

FILE NAMES

All the files known to the Operating System at a particular time are
organized into a tree of catalogs. At the top of this tree is a
predefined catalog with names for the highest level objects seen by
the system. These include physical devices, such as a prinmter or

a godem, and the volume names of any disks that are available.

Any object catalogued in the file system can be named by specifying
the volume in which the file resides and the file name. The names

are separated by the character "=". Because the top catalog in the
tree has no name, all complete pathnames begin with "=".

Page &

1=-Mar=-82 Operating System Reference Manual Confidential

For example,

=PRINTER names the physical printer,

=LISA=FORMAT.TEXT
names a file on a volume named LISA.

The file name can contain up to 32 characters. If a longer name is specified,
the name 1s truncated to 32 characters. Accesses to sequential devices
use a dummy filename that is ignored but must be present in the pathname.
For example, the serial port pathname
-RS2328
is 1llegal, but

-RS232B-XYZ

is accepted, even though the =XYZ portion is ignored. Certain device names
are predefined:

RS2324 Serial Port |
RS2328 Serial Port 2
UPPER Upper Twiggy drive (Drive 1)
LOWER Lower Twiggy drive (Drive 2)

DEVO, DEV6, DEV7, DEVS .
Bit bucket (byte stream is flushed into oblivion)

Upper and lower case are significant in file names: ‘TESTVOL’ 1s not the
same object as ‘TestVol’. Any ASCII character is legal in a pathname,
including the non=printing characters.

THE WORKING DIRECTORY

It is sometimes inconvenient to specify a complete pathname,
especially when working with a group of files in the same volume.

To alleviate this problem, the operating system maintains the

name of a working directory for each process. When a pathname is
specified without a leading "-", the name refers to an object in the
working directory. For example, if the working directory is =-LISA
the name FORMAT.TEXT refers to the same file as ~LISA~FORMAT.TEXT.
The default working directory name is the name of the boot volume
directory.

DEVICES

The Lisa hardware supports a variety of I/0 devices lucluding the
keyboard, mouse, clock, two Twiggy disk drives, two serial ports,

a parallel port, and three expansion I/0 slots. The screen, keyboard,
and mouse are accessed through LisaGraf and the Window Manager.
The other devices are handled by the Operating System.

Page 5

l=Mar=-82 Cperating System Reference Manual Confidential

Device names follow the same couventions as file names. Attributes
like baud rate and print intensity are controlled by using the
DEVICE CONTROL call with l:ha appropriate pathname.

All device calls are synchronas from the process point of view.
Within the Operating System, however, 1/0 operations are asynchronous.
The process doing the I/0 is blocked until the operation 1s complete.

Each device has a permanently assigned priority. From highest to lowest
the priorities are:

Serial Port 1 (RS2324)

Serial Port 2 (RS2328, the leftmost port)
I/Q Slot Q

I1/0 Slot 1

IL/0 Slot 2

Speakar

10 ms system timer

Keyboard, mouse, soft=off switch, battery powered clock
CRT vertical retrace interrupt

Parallel Port

Twiggy 1 (UPPER)

Twiggy 2 (LOWER)

Video Screen

The Operating Systewm maintaius a Mount Table which connects each available
device with a name and a device number. The Device Driver associated with
a device knows about the device’s physical characteristics such as sector
slze and lnterleave factors for disks.

STRUCTURED DEVICES

On structured devices, such as disk drives, the File System maintains a
higher lavel of data access built out of pages (logical names for blocks),
label contents, and deta clusters (groups of comtiguous pages). Any

file access ultimarely translates into a page access. Intermediate
buffaring is provided only when it is needed. Each page on a structured
device is self-identifying, and the page descriptor is stored with the
page contents to reduce the destructive impact of an L/O error. The eight
components of the page descriptor are:

Version number

Volume identifier

File identifier

Amount of data on the page
Page name

Page position in the file
Forward link

Backward link

Each structured device has a Media Descriptor Data File (MDDF) which

describes the various attributes of the media such as its size, page
length, block layout, and the size of the boot area. The MDDF is

Page 6

http://devi.ce

l=Mar=-82 Operating System Reference Manual Confidencial

created when the volume is initialized.

The File System also maintains a bitmap of which pages on the media
are currently allocated, and a catalog of all the files on the volume.
Each file contains a set of file hints which describe and point to

the actual file data. The file data nead not be allocated in contiguous
pages.

THE VOLUME CATALOG

On a block structured device, the volume catalog provides access to
the files. The catalog is itself a file which maps user names Iinto
the internal files used by the Operating System. Each catalog entry
contains a variety of information about each file including:

name

Cype

incernal file number and address

size

date and time created or last modified
file identifier

safety switch

The safety switch is used to avold accidental deletions. While the safety
switch 1s on, the file caunot be deleted. The other fields are described
under the LOOKUP file system call. ‘

The catalog can be located anmywhere on the media, and the Operating System
may even move it around occassiomnally to avoid wear on the media.

LABELS

An application can store its owun information about file attributes in
an area called the file label. The label allows the application to
keep the file data separate from information maintained about the

file. Labels can be used for any object in the file system. The
maximum label size is 488 bytes.

LOGICAL AND PHYSICAL END OF FILE

A file contains some number of bytes recorded in some omumber of
physical blocks. Additional blocks might be allocated to the file,
but not contain any file data. There are, therefore, two measures of
the end of the file called the logical and physical end of file. The
logical end of file (LEOF) 18 a pointer to the last stored byte which
has meaning to the application. The physical end of file (PEOF) is

a count of the number of blocks allocated to the file.

Page 7

l=Mar—-82 Operating System Reference Manual Confidential

In addition, each open file in each process has a pointer associated
with it called the file marker that points to the next byte in the
file to be read or written. When the file is opened, the file marker
points to the first byte (byte oumber 0). The file marker can be
positioned implicitly or explicitly using the read and write calls.
It cannot be positicned past LEOF, however, except by a write
operation that appends data to a file.

Whan a file is created, an entry for it is made in the cacalog
spacified in its pathname, but no space is allocated for the file
itself. When the file 1s opened by a process, space can be allocated
explicitly by the process, or automatically by the operating system.
If a write operation causes the file marker to be positioned past the
Logical End Of File (LEOF) marker, LEOF and PEOF are autcmatically
extended. The new space is contiguous If possible, but not
necessarily adjacent to the previously allocated space.

FILE ACCESS

There are several modes in which an application can perform input,
output, or device control operations. Applications are previded with
a device independent byte stream interface. A specified mumber of
bytes is trangferred either relacive to the file marker or at a
specified byte location in the file. The physical attributes of the
device or file are not seen by the application, except that devices

that do not support positicning can only perform sequential
operations.

Applications that kaow the block gize for structured devices can
optimize performance by performing I/0 on block boundaries im

integral block mulciples. This mode bypasses the buffering of parts

of blocks that the system normally performs. Data transfers take
place directly between the device and the ccomputer memory. Although
data transfers occur in physical units of blocks, the file marker still
indicactes a byte position in the file.

A file can be open for access simultaneocusly by multiple processes.
All write operations are completed before aumy other access to the
file i3 permitted. When one process writes to a file the effect of
that write is immediately visible to all other processes reading the
fila. The other processes may, however, have accessed the file in
an earlier state and not be aware of the change until the next time
they accegs the file. It 1ig left up to the applications to inmsure
that processes maintain a consistent view of a shared file.

Page 8

1=Mar-82 Cperating System Reference Mamual Confidential

Each time a file is opened, the Operating System allocates a file
marker for the calling process and a run—time identification number
called the refnum. The process uses the refnum in subsequent calls
to refer to the file. Each operation using the refnum affects only
the file marker associated with it. The refnum is global ounly

if a process has opened the file with global access. The LEOF and

PEOF values, however, are always global attributes of the file,

and any change to these values i35 immediately visible to all processes
accessing that file.

Processes can share the same file marker. In this access mode

(global access) each of the processes uses the same refoum for

the file. When a process opeus a file in global access mode,

the refnum it gets back can be used by amy process. Note that

{Globel Access] access allows the same file to be opened globally by
any oumber of processes, creating any number of simultaneously

shared refnums. [Global Access,Private] access opens a file for global
access. but allows no other process to Open that file. Applications
must be aware of all the side effects that global accesses cause.

For example, processes making global accesses to a file cannot

make any assumptions about the location of the file marker from
one access to the next.

Even if the access mode is not global, more than one process can have
the same file open simultanecusly. Each process, in this case, has

its own refnum and file marker. A write operation to the file, however,
ls immediately visible to all readers of that file.

PIPES

Becaugse the Operating System supports multiple processes, a mechaniam
is needed for interprocess communication. This mechanism is called a
pipe. A pipe is very similar to amy other object in the file system —
it is named according to the same rules, and can have a label.

A pipe also implements a byte stream that queues information in a
first=in-first=-out manner for the pipe reader. Uunlike a file,

however, a pipe can have ouly one reader at a time, and once data is
Tead from a pipe it is no longer available in the pipe.

A pipe can only be accessed in sequential mode. Only one process can
read data from a pipe, but angy number of processes can write data
into it. Because the data read from the pipe is consumed, the file
marker is always zero. If the pipe is empty and no processes have it
open for writing, End Of File is returned. If any process does have
it open for writing, the reading process is suspended until data
arrives in the pipe, or until all writers close the pipe.

When a pipe is created, its physical size is U bytes. You must allocate
space to the pipe before trying to write data into it. To avoid
deadlocks between the reading process and the writers, the Operating
3ystem does not allow a process to read or write an amount of data
greater than half the physical size of the pipe. For this reason,

you should allocate to the pipe twice -as much space as the largest

Page 9

l=Mar-82 Cperating System Reference Manual Confidencial

amount of data in any plaoned read or write operation.

A pipe 18 actually a circular buffer with a read pointer and a write
pointer., All writers access the pipe through the same write pointer.
Whenever either pointer reaches the ‘end’ of the pipe, it wraps back
around to the first hyte. If the read pointer catches up with the
write pointer, the reading process blockas until data is writtenm or
until all the writers close the pipe. Similarly, if the write
pointer catches up with the read pointer, a writing process blocks
until the pipe reader frees up some space or until the reader closes
the pipe. Because pipes have this structure, there are certain
restrictions on some operations when dealing with a pipe. These
restrictions are discussed below under the relevant file system calls.

For massive data transfers, it is recommended cthat shared files or
data segments be used rather than pipes.

EILE SISTEM CALLS

This section describes all the operating system calls that pertain
to the file system. A summary of all the Operating System calls can

be found in Appendix A. The following special types are used in
the file system calla:

Pathname = STRING({255];

E_Name = STRING(Max Enamel; (* Max_EName = 32 *)
Accasses = (DRead, DWrite, Append, Private, Global_ Access);
MSet = SET OF Accesses;

‘IoMode = (Absolute, Relative, Sequential);

The fs_info record and its associated types are described under the LOOKUP
call.

Page 10

1-Mar-82 Operating System Reference Manual Confidenrial

MARE FILE (Var Ecode:Integer;
Var Path:Pathname;
Label size:Integer)

MAKE PIPE (Var Ecode:Integer;
Var Path:Pathname;

Label_size:Integer)
Ecode: Error indication
Pach: Full name of new object

Label size: Number of bytes for the object’s label

MAKE FILE and MAKE PIPE create the specified type of object in the catalog
given in pathname. If the pathname specified in Path does not specify
a volume name, the working directory is used. Label size specifies the
initial size in bytes of the label that the application wants to maintain
for the object., It wust be less than or equal to 488 bytes. The label
can grow to contailn up to 488 bytes no matter what its inicial size is.

Any error indication is returned in Ecode. An object cannot be created
in the root catalog.

In the example below, we check to see whether the specified file exists before /

opening it. Applications that use the Window Mapager must use a dlalog
box, rather than READ and WRITE.

CONST FileExists = 850;
VAR FileRefNum,ErrorCode :INTEGER;
FileName:PathName;
Happy :BOOLEAN;
Response:CHAR;
BEGIN
Happy : =FALSE;
WHILE NOT Happy DO
BEGIN
REPEAT (* get a file pame *)
WRITE(File name: ');
READLN(FileNams);
UNTIL LENGTH(FileName)>0;
HA.KE_FILE(ErrotCode.FileNau,O); (* no label for chis file *)
IF (ErrorCode<>0} THEN (* doea file already exist? *)
IF (ErrorCode=FileExists) THEN (* yes *)
BEGIN
WRITE(FileName, already exists. Overwrice? ‘);
READLN{Response);
E§Epy:-(Response IN [‘97,7Y°1); (* go ahead and overwrite %)
E

ELSE WRITELN(Error ’,ErrorCecde,’ while creating file.”)
ELSE Happy:=TRUE;
END;
OPEN(ErrorCode ,FileName ,FileRefNum, ([Dwrite]);
END;

Page 11l

l=Mar-82 Operating System Raference Marual Confidential

RILL OBJECT (Var Eccde:Integer;
Var Path:Pathname}

Ecode: Error indicator
Path: Full name of object to be deleted

KILL OBJECT deletes (removes) the entry given in path from the

file system. Objects in the root catalog and objects with the

safety switch on cannot be deleted. If a file or pipe is open

at the time of the KILL QBJECT call, its actual deletion is

postponed until it has been closed by all processes that have it copen.
During this period no new processes are allowed to open it. The
object to be deleted need not be cpen at the time of the KILL OBJECT
call. A KILL OBJECT call cannot be overridden. :

The following code fragment deletes files until ecarriage return is typed:

CONST FileNotFound=894;
VAR FileName:PathName;
ErrorCode: INTEGER;
BEGIN
REPEAT
WRITE(File to delete: ');
READIN(FileName)};
IF (FileName<>’ ") THEN
BEGIN
KILL QBJECT(ErrorCode,FileName);
IF (ErrorCode<>0) THEN
IF (ErrorCode=FileNotFound) THEN
WRITELN(FileName,’ not found.’)
ELSE WRITELN('Error ’,ErrorCode,’ while deleting file.’)
ELSE WRITELN(FileName, ' deleted.’);
END
UNTIL (FileName='");
END;

Page 12

l-Mar-82 Operating System Reference Manual Confidential

RENAME ENTRY (Var Ecode:Integer;
Var Path:Pathname;
Var NewName:E_Name);

Ecode: Error indicator
Path: Object’s old (full) name
Newname: Object’s new (partial) name

RENAME ENTRY changes the name of an object in the file system.
Newname is not a full pathname, but the new name for the object
identified by Pacth. That is,

VAR OldName:PathName;
NewName:E Name;

ErrorCode: INTEGER
BEGIN

OldName: =’ =LISA=FORMATTER.LIST’;

NewName: =’ NEWFORMAT . TEXT’ ;

RENAME ENTRY(ErrorCode ,0ldName,NewName);
END;

renames FORMATTER.LIST to NEWFORMAT.TEXT. The new file‘s full
pathname is ‘=LISA=NEWFORMAT.TEXT’.

Predefined names in the root catalog cannot be renamed, but volume names
can be renamed by specifying only the volume name in Path.

Page 13

1-Mar=82 Operating System Reference Mamual Confidential

LOOKUP (Var Ecode:Integer;
Var Path:Pathname;
Var attributes:Fs Info)

Ecode: Ertor indicator
Path: Object to lookup
Attribuctes: Information returned about Pathname

LOOKUF returns inforwation about an object in the file system. For devices
and mounted volumes, call LOOKUP with a pathname that names the device or
volume without a filename component: '

DevName:=’'UPPER"; (* Twiggy drive 1 *)
LOOKUP{ErrerCode,devname, InfoRec);

If the device is currently mounted and 1s block structured, the record
fields contain meaningful values; otherwise, these values are undefined.

When LOOKUP is called for a file system object {not a device or volume),

the refaum field aund all the record fields thac follow that field coatain
invalid daca. Use INFO to get this information.

The fs_info record is defined as:

Uild = INTEGER;
Info_Type = (device t, volume t, object_t};
Devtype = (d!.skdev, pascalbd, seqdev, bitbkt, non_io);
Filetype = (undefined, MDDFFile, rootcat, freeust, badblocks,
syasdata, spool, exec, usercat, pipe, bootfile,
swapdata, swepcode, ramap, userfile, killedobject);
Entrytype = (emptyentry, catencry, linkeacry, fileencry, pilpeentry,
ecantry, killedentry);
fs_{nfo = RECORD
name: e _name;
devoum: INTEGER;
CASE OType:info_type OF

dev:l.ce_: N
volume €:
(lochannel: INTEGER
devt: devtype;

slot_no: INTEGER;
fs_size: LONGINT;
vol_size: LONGINT;
blockstructured,
mount ed: BOOLEAN ;
opencounc : LONGINT;
privatedev,

remote,
lockeddev: BOOLEAN;
wount_pending,

unmount _peunding: BOOLEAN;
volname,

password: e name;
fsversion,

Page 14 -

l=Mar-82 Operating System Reference Manual Confidential

volid,

volnum: INTEGER;
blocksize,
datasize,
clustersize,
filecount: INTEGER;
freecount: LONGINT;

pIvC, ‘ (* Date Volume Created *)

DTVB, {* Date Volume last Backed up *)
DTVS: LONGINT;

Machine id,

overmount stamp,

magter copy_id: LONGINT;
privileged,
write protected: BOOLEAN;
master,
COPY,
scavenge_flag: BOOLEAN);

object_t:
{(size: LONGINT; (*actual no of bytes written*)
psize: LONGINT; (*physical size in bytes*)
lpsize: INTEGER; (*Logical page size in bytes*®)
ftype: filetype;
etype: entrytype;

DTC, (* Date Created *)

DTa, (* Date last Accessed *)
PTM, - {* Date last Mounted *)
DTB: . LONGINT; (* Date last Backed up *)

refnuym: INTEGER;
fmark: LONGINT; (* file marker *)

acmode: mset; (* access mode *)
nreaders,

nvricers,

nusers: INTEGER;

fuid: uid; (* unique identifier *)
eof,

safety_on, (* safety switch setting *)
kswitch: BOQLEAN;

private,

locked,

protected:BOOLEAN);

END;

The EOF field of the fg_info record is set after an attempt Co
write when no disk space 1s available, and after an attempt to
read more bytes than are available from the file marker to the
logical end of file. If the file marker is at the 20=ch byte
of a 25 byte file, you can read 5 bytes without setting ECOF,
but if you try to read 6 bytes, you get 3 bytes of data and
EQOF is set-

Page 15

1-Mar=-82 Operating System Reference Mamial ' Confidential

The following code reports how many bytes of data a given file has:

VAR InfoRec:Fs_Info; (* information returned by LOCKUP and INFO *)
FileName:PathName;
ErrorCode: INTEGER;
BEGIN
WRITE("File: “);
READLN(FileName};
LOOKUP(ErrorCode ,FileName,InfoRec);
IF (ErrorCode<>0) THEN
WRITELN(' Canmot lookup °,FileName)
ELSE
WRITELN(FileName,’ has ’,InfoRec.Size,” bytes of data.’);
END;

Page 16

l=Mar-82 Operating System Refereuce Manual Coufidential

INFO (Var Ecode:Integer;
Refnum:Integer;
Var Reflnfo:Fs_Info);

Ecode: Error lndicator
Refnum: Reference number of object in file system
Refinfo: Information returned about refnum’s object

INFC serves a function similar to that of LOOKUP, but is applicable
ouly to objects in the file system which are open. The definitionm
of the Fs Info record i{s giveu under LCOKUP and in Appendix A.

Page 17

1=-Mar-82 Jperating System Reference Manual Confidential

OPEN (Var Ecode:Integer;
Var Path:Pathname;
Var Refnum:Integer;

Manip:MSet)
Ecode: Error indicator
Path: Name of aobjmct to be opened
Refnum: Reference number for abject
Manip: Set of accsassas

Before a process can perform I/0 operations upom an object in the

fila system, it must OPEN that object. Path must specify eicher

a pipe, devige, or file. OPEN retyrns refnum to the process, and

the process subsequently uses refnum for I/0 and control operations

on the open file. The manip parameter specifies the kind of accesas

the process wants to the file: DRead, DWrite, Append, Global_Access, or
Private. [DWrite] access 13 equivalent to [Dwrite,Append] access.

If a process wants exclusive access to an object (a printer, for
example), it must specify (Privace] as its access mode.

If the object opened already exists and the process calls WRITE DATA
without specifying Append access, the object is overwritten. The
Operating System does not create a temporary file and wait for the
CLOSE OBJECT call before deciding what te do with the old file.

An object can ba open for writing by two separate processges
simultaneously. Lf the processes do not share a global refnum,
they mat coordinate their file accesses so as to avold overwriting
each other’s data. To do this, both processes can, for example,
open the file with {Append] access.

Page 18

l=Mar=82 Operating System Reference Manual Confidential

CLOSE OBJECT (Var Ecode:Integer;
Refnum:Integer)
Ecode: Error indicator -
Refnum: Reference mumber of object to be closed.

If refnum is not global, CLOSE_OBJECT terminates amy use of refnum
for I/0 operations. A FLUSH operatior is performed automatically
and the file is saved in its current state. If refnum is-

and other processes have the file open, refnum remains valid for
these procasses, and other processes can open the file using refnum
even though a CLOSE_OBJECT call has been made against 1t.

The following code fragment opens a file, reads 512 bytes from it, then
closes the file.

TYPE Byte==128..127;

VAR FileName:PathName;
ErrorCode,FileRefNum:Integer;
ActualBytes:Longlnt;

Buffer: ARRAY[O0..511} OF Byte;

BEGIN

OPEN{ErrorCode ,FileName,FileRefNum, {DRead]);

IF (ErrorCode<>0) THEN

WRITELN(Cannot open ‘,FileName)

ELSE

BEGIN
READ DATA(ErrorCode,
FileRefNum,
ORD4(@Buffer),
512,
ActualBytes,
Sequential,
0);
IF (ActualByres<512) THEN
WRITE{ Only read ‘,ActualBytes,’ bytes from ‘,FileName);
CLOSE OBJECT (ErrorCode ,FileRefNum);
END;
END;

Page 19

1=Mar=-62 Operating System Reference Manual . Confidential

READ DATA (Var Ecode:Intager;
Refnum:Integer;
Data_Addr:Longlnt;
Count:LongInt;

.Var Actual:Longlnt;
Mode: IoMode;
Offset:LongInt)

WRITE DAIA (Var Ecode:Integer;
Refnum:Integer;
Data_Addr:Lomgint;
Count:Longlnt;

Var Actual:Longlnt;
Mode : IoMode ;
Of fset:LongInt)

Ecode: Ertor indicator

Refnum: Reference number of object far L/0
Data_Addr: Addresas of data (source or destinacion)
Count: Number of bytes of data to be cransferred
Actual: Actual number of bytes transferred

Mode : 1/0 mode

Offset: Offset from file marker

READ DATA reads information from the pipe or Eile specified by
refoum, and WRITE DATA writes information to it., Data_Addr {s the
address for the destination or source of count bytes of data. The
actual number of bytea transferred is returned in Actual.

Mode can be absolute, relacive, or sequencial. 1In absclute mode,

of faet specifies an absolute byte of the file. In relative mode,

it specifies a byte relative to the file marker. In sequential mode,
the offset is ignored (it is assumed to be zero) and transfers occur
relative to the file marker. Sequential mode {(which is a special case
of relative mode) is the only allowed access mode for reading or writing
data in pipes. Non=sequential modes are valid only on devices that
support positioning. The first byte is numbered O.

If a process attempts to write data past the physical end of file

on a disk file, the Operating System automatically allocates enough
additional space to contain the data. This new space, however, might
not be contiguous with the previous blocks. You can use ALLOCATE to
ensure physical contiguity before writing past PEOF.

READ DATA from a pipe that does not contain encugh data to satisfy
count suspends the calling process until the data arrives in the
pipe if any other process has that pipe open for writing. If there
are no writers, the end of file indication is returned by Info.
Beacuse the pipe {8 circular, WRITE DATA to a pipe sugpends the
calling process (the writer) until enough space 1s available

(until the reader has cousumed encugh data) if there is a reader.
If no process has the pipe open for reading and there is not enough
space in the pipe, the end of file indication is returned.

Page 20

1-Mar=82 Operating System Reference Manual Confidential

The following program coples a file:

PROGRAM CopyFile;
USES (*3U Source:Syscall.Obj*) SysCall; -
TYPE Byte=—128..127;
VAR OldFile,NewFile:PathName;
0ldRefNum,NewRefNum: INTEGER;
BytesRead ,BytesWricren: LONGINT;
ErrorCode ; INTEGER;
Response:CHAR;
Buffer: ARRAY [0..511] OF Byte;
BEGIN
WRITE('File to copy: ‘); PACKED
READLN(OldFile);
OPEN(ErrorCcde ,0ldFile,0ldRefNum, {DRead]);
IF (ErrorCode<>0) THEN
BEGIN
WRITELN(‘Error ',ErrorCode,’ while opening ’,01dFile);
EXIT(CopyFile);
END:
WRITE('New file name: “);
READLN(NewFile);
MAKE_FILE(ErrorCode ,NewFile,0);
OPEN(ErrorCode ,NewFile ,NewRefNum, {DWrite]);

REPEAT
READ DATA(ErrorCode,
OldRefNum,
OBRD4(@Buffer),

512,BytesRead,Sequential,0);
IF (ErrorCode=0) AND (BytesRead>Q) THEN
WRITE_PAIA(ErrorCode,
NewRefNum,
ORD4(@Buffer),
S12,BytesWritten,Sequential,Q);
UNTIL (BytesRead=0) OR (BytesWritten=0) OR (ErrorCode<{>C};
IF (ErrorCode<>0) THEN
WRITELN(File copy encountered error ’,ErrorCode);
CLOSE OBJECT(ErrorCode ,NewRefNum);
CLOSE_OBJECT (ErrorCode ,0ldRafNum);
END.

Page 21

l=Mar-82 Operating System Reference Manual Confidential

READ LABEL (Var Ecode:Integer;

Var Path:Pathnaue;
Label Addr:Longint;
Count: Longlnt;

Var Actual:LonglInt)

WRITE LABEL (Var Ecode:Integer;
Var Path:Pathname;
Labal_Addr:Longint;
Count:LongInt;

Var Actual:LonglInc)

Ecode: Error indicator

Pach: Name of object containing the label
Label addr: Source or destimacion of I/0
Count: Numbar of bytes Lo transfer
Actual: Actual number of bytes transferred

These calls read or write the label of an object in the file system.
I1/0 always starts at the beginning of the label. Count is the
number of byces che process wants transferred to label addr, and
actual is the actual number of bytes transferred. An error is
recturned if you attempt to read more bytes than were available

ir tha labal. You can read up to the maximim aumber of bytes
written to the label, but cannot write more than 488 bytes to it.

Page 22

l=Mar-82 Operating System Reference Manual Confidential

DEVICE_CONTROL (Var Ecode:Integer;
Var Path:Pathname;
Var CParm:dctype)

Ecode? Error indicator
Path: Device to be coutrolled
CParm: A record of information for the device driver

DEVICE_CONTROL sends a device~specific control request to the device
driver for the device named by path. Fath gust name an abject in the
root catalog. The record detype 1is defined:

Dctype = RECORD
dcVersion: INTEGER;
decCode: INTEGER;
dcData: ARRAY([0..9] OF LONGINT

END;
dcVersion: version mumber of format for application to driver data
dcCode: control code for device driver
dcData: specific control data parameters

Page 23

l=Mar-82 Operating System Reference Manmual Confidential

ALLOCATE (Var Ecode:Integer;
Refnum: Integer;
Contiguous:Boolean;
Count : Longint;

Var Actual:Integer)

Ecode: Error indicator
" Refpum: Reference mumber of object toc be allocated space
Contiguous: True=allocata contiguously
Count : Number of blocks to be allocated
Actual: Number of blocks actually allocatad

Use ALLOCATE to increase the space allocated to a disk file. If
possible, ALLOCATE adds count blocks to the space available to the
file referenced by refnum. The actual number of blocks allocated is
returned in actual. If contiguous is true, the new space 1is
allocated in a siogle, unfragmented space on the disk. This space is
aot aecesgarily adjacent to any existing file blocks.

ALLOCATE applies omnly to block structured devices and pipes. An attempt
to allocate more space to a pipe is successful only if the pipe’s read
pointer is less thap or equal to ics write pointer. If the write
polnter has wrapped around, but the read pointer has not, an allocation
would obviously cause the reader to read invalid and uninitialized data,
.80 the File System returns an errecr in this case.

Page 24

l=Mar-82 Operating System Reference Mamal Confidential

COMPACT (Var Ecode:Integer;
Refnum:Integer)

Ecode: Error indicator
Refnum: Reference number of cbject to be compacted

COMPACT deallocates gny blocks after the block that contains the
logical end of file for the file referenced by refnum. (See Figure 3
below). COMPACT applies omnly tec block structured devices and pipes.
As is the case with ALLOCATE, compaction of a pipe is legal only if
the read pointer is less than or equal to the write pointer. If the
write pointer has wrapped around, but the read peinter has not,
compaction could destroy data in the pipe, so the File System returms
an error in this case.

TRUNCATE (Var Ecode:Integer;
Refnum: Integer)

Ecode: Error indicator
Refnum: Reference mumber of object to be truncated

TRUNCATE sets the logical end of file indicator to the current
position of the file marker. Any file data beyond the file marker
is lost. TRUNCATE applies only to block structured devices and
pipes. Truncation of a pipe can destroy data that has been
written but not yet read., As the diagram shows, TRUNCATE deoes not
change PEOF, omnly LEOF.

< ==Compact—+
| |
v v
| AN T TR AN I N NS S IR N (N N A S N N A
[R T (R T SN R N A AR R N A D A
l | |
File Marker LEOF PECF
i |
+=——Truncate—+

The Relationship of COMPACT and TRUNCATE

In this figure the boxes represent blocks of data. Note that LEOF

can point to any byte in the file, but PEOF can only point to a block
boundary. Therefore, TRUNCATE can reset LEOF to any byte in the file,
but COMPACT can only reset PEOF to a block boundary.

Page 25

1=-Mar-82 Operacing System Reference Manual Confidencial
FLUSH (Var Ecode:Integer;
Refnum:Inzeger)

Ecode: Error indicator
Refnum: Reference mumber of destinmaciem of I/0

FLUSH forces all buffered information destined for the file
identified by refnum to be writcten out to thac file.

Page 26

1=Mar-82 Operating System Reference Manual Confidential

SET_SAFETY (Var Ecode:Integer;
Var Path:Pathname;
On_off:Boolean)

Ecode: Error indicator A
Path: Name of object containing safety switch
On_Off: Set saftey switch (On=true), or clear it (Off=false)

Each object in the file system has a "safety switch" to pravent
costly acecidents. If the safety switeh 1s on, the objfect cannot be
deleted. SET SAFETY turns the switch on or off for the object
identified by path. Processes which are sharing a file should
cooperate with each other when setting or clearing the safety switch.

Page 27

l=Mar-82 Operating System Reference Manual Confidential

SET_WORKING DIR (Var Ecode:Integer;
Var Path:Pathname)

GET_WORKING_DIR (Var Ecode:Integer;
Var Path:Pathname)

Ecode: Error indicator
Path: Working directory name

The Operating System uses the nams of the working directory to
resolve partially specified pathnames into complete pathnames.
GET WORKING DIR returus the current working directory name in
path. SET WORKING DIR sets the working directory name.

The following code reports the current name of the working directory
and allows you to set it to something else:

VAR WorkingDir:PathName;
ErrorCode : INTEGER;
BREGIN
GET WORKING DIR(ErrorCode,WorkingDir);
IF (ErrorCode<>Q) THEN
WRITELN('Cannot get the current working directory!’)
ELSE WRITELN(The current working directory is: ,WorkingDir};
WRITE('New working directory name: ');
READLN(WorkingDir);

SET_WORKING_DIR(ErrorCode ,WorkingDir);
END;

Page 28

l=Mar=-82 Operating System Reference Manual Confidential

RESET_CATALOG(VAR Ecode:INTEGER;
VAR Path:Pathname);

GET_NEXT_ENTRY(Var ECode:INTEGER;
Var Prefix,
Entry:E_Name);

RESET CATALOG and GET_NEXT ENTRY give a process access to catalogs.
RESET ¢ ~_CATALOG sets the catalog file marker’ to the beginning of the
catalog specified by Path. Path should be a root volume name.
GET_NEXT ENTRY then performs sequential reads through the catalog
file re:urning file system object names. An end of file error

code {s returned when GET NEXT ENTRY reaches the end of the catalog.
If prefix is non-null, only those entries in the catalog that begin
with that prefix are returned. If prefix is “AB’, for example, oanly
file names that begin with ‘AB” are returned. The prefix and catalog
marker are local to the calling process, so several processes c¢an
simultanecusly read a catalog without clobbering each other.

Page 29

l=Mar-82 ' Operating System Referance Mamual Coufidential

MOUNT (Var Ecode: Integer;
Var VName:E_Name;
Var Pagsword, Device:E_ Name
Var devName:E_Name)

UNMOUNT (Var Ecode:Integer;
Var VName:E name)

Ecode: Error indicator
VName: Volume nama
Password: Password for device
Devname: Device name

MOUNT and UNMOUNT handle access to block structured devices. If the
password given matches the password for the volume found on the davice
specified, MOUNT creates an encry in the root catalog which logically
attaches that volume’s catalog to the file systew. The name of the
volume mounted 13 returned in the parameter vname.

UNMCUNT removes the specified volume from the root catalog, thereby
removing its gsubtree from che fi{le system. Nothing on that volume
can be opened after UNMOUNT has been called. The voluwme cannot be

unmoynted unti] all the objects oa the volume have been cloged by all
processes using them.

VName can be a device name (°RS232B’ or ‘DEVE’, for example). In

the UNMOUNT call, "Name can also be a volume name without the
preceding dash (°TESTVOL’, mot ‘=-TESTVOL’).

Page 3C

l=Mar-82 Operating System Reference Manual Confideucial

CHAPTER TWO
PROCE SSES

Tntroduction « « o « « « o ¢ & & & o o« ¢ o 32
Process SETUCEUTE o« « « + « « = o o ¢ ¢ s+ o 32
Process Hierarchy « + o« o + = » = « o « s o Jb
Process Cregtion « « o o o« o » » « s s ¢ o + 33
Process COOCEOL o = « « = o o o o o o = » « 35
Process Scheduling - « = + o » o « « o + & o 33
Process Termination =+ « « « ¢« ¢+ « o s » « » 36
Process System Calls . + « & o o« ¢ ¢ o o & 37
M-Pmctss.ll--llintl.lh.37
TEBHINA‘I'EPRDCESS............39
INFO PROCESS 4 « « ¢ o o o o = ¢ s o o = » 40
KILL'PROCESS « » = o o o » o o o o » s o o 41

SUSPEND PROCESS - « + v o = = » « o » + + 42
ACTIVATE PROCESS « + = o o o o = = = o o o 43
SETPRIORITY PROCESS « + o o o s o = o « « bbb
YIELD CPU + o v o o s o + o o o o o = s o 45

HY_ID.--..--.....---...‘GS

Page 31

l=Mar-82 Operating System Reference Manual Confidential

PROCESSES

INTRODUCTION

A procegs 1s a plece of exsacutable code that can be run at the same

time as other procssses. Although processes can share code and data,

each process has its cwn stack. In most systems, including the cue supported
by the Operating System, the parallel or concurrent execution of the
procesges is simulated by using re—entrant code and a scheduler. The
scheduler allows each process to run until some condition occurs. At

that time, the state of the running process is saved, and the scheduler
looks at the pool of ready=to-run processes for the next one to be

executed. When the first process later resumes execution, it merely

picks up where it left off in its execution.

The status of a process depends on its acheduling state, execution gtate,

and memory state. The mempry manager handles the process memory state.

If any code or data segments need to be swapped in for the process to execute,
the memory maunager is called before the process is launched by the scheduler.

The process execution state depends on whether the process 1is executing
in user mode or in system mode. In system mode, the process axecutes
Cperating System code in the hardware domain O. In user mode, the process
executes user code in domainms 1, 2, or 3.

The process scheduling state has four posgibilities. The process is
"eunning' if it is actually engaging the attention of the CPU. If it
is ready to continue execution, but is being held back by cthe scheduler,
the process is said to be "ready". When it has coumpleted ics task and
has exitted its ocuter bloeck, it is "terminated". A process can also

be "blocked”. In the blocked state, the process is ignored by the
scbeduler. It cannot continue its execution until scmething causes

its state to be changed to "ready'. Processes commonly become

blocked while awaiting completion of I/C. Certain Operating System
calls distinguish becween a process that is blocked by an I/0 operatioam,
and a process that is blocked because it has been suspended by some
other process.

PROCESS STRUCTURE

A process is a program. It can use up to 7 data segments and 116 code
segments simultaneously. When a process i3 instantiated, the Operacing
System creates a Process Coutrol Block (PCB) for it. The PCB comtains
the process state, global id, and a pointer to a record of the process’s
current needs. Thnese include pointers to its code and data segmencs, its
stack, an area to save registers, and so on. When a process calls the
Operating System, the data segments and stack of the process are
remapped into domain 0 where che COperating System executes. The

address space laycut of system and user processes is gset up Lo make

this remap as efficient as peoasible:

Page 32

1=Mar-82

Seg#

116

122
123
124
125
126
127

Operating System Reference Manual Confidential

PROCESS ADDRESS SPACE LAYOUT

User Mode System Mode
Segi
— Ar—
| Unavailable 0 | Low memory (512 Read=Only bytes)
r— ———— .

—

User Code Segments 0S Code Segments

«

I

|

}

}

!

| F————

[95 | Real Memory Access (I/0 Space)
| + 1 (l6 needed for 2 megabyte access)
| «

| 111 1§

| Fr—

i 112 | Supervisor Stack
] —————

1 113 | System Jump Table
i A Em—

| 114 | Sysglobal data

| —

] 115 | Syslocal of currently executing process
———— Ar——

} LDSN 1 116 | User Data Space

| |

| |

| 1

! |

| LDSN 7 i

—— l

| Stack I

F——— |

| Shared Intrinsic Unit Data |

r—————— |

| I/0 Space |

P————— |

| Reserved |

tr— 1

| Screen 127 | Screen

———— E ————

Page 33

1=Mar-82 Operating System Reference Manual Confidential

During execution, the process stack is:

PROCESS STACK LAYOUT

High Memory 4 +
| Caller’s stack frame |

| Callar’s dynamic link | &= =

P

+
|
. |
' ' |
| Function Resulr (only | l
{ for a function) i |
i |
l
|
I
i
|
!
|

| Procedure arguments |

e
| Static Link {only for a |

| level 2 or higher proc) |

I I T R N N R
| Return Address i

= - m - - == - - -

(A6) - = = =>! Dynamic Link |= = =+

e s w e ww wom ow omoa p
| Local frame |

N

| Dynamic requirements |
+ —tl= = = (AT}

Low Memory

Each process has an associated priority, an inceger between 1 and 255.
The process scheduler usually executes the highest priority ready process.

The higher priorities (200 to 255) are reserved for Operating System and
Filer processes.

PROCESS HIERARCHY

When the system i3 first gtarted, several system processges exist. At the
base of the process hierarchy is the rcot process which handles various
internal Operating Sysztem functions. It has at least three sons, the memory
manager process, the timer process, and the shell process. The memory
manager process handles code and data segment swapping. The shell

- process is a simple command interpreter which you can use o run programs
and create other processes. In the final Lisa system, the shell process
will be the Filer. The timer process handles rtiming functions such as

timed event channels.

Page 34

1=M3r-82 Operating System Reference Manual Confidential

Root Process

FoN
/N \m——
/ | \ |
/ Shell \ Cther...
+——/ Process \ et
| | |
Memory Manager | Timer
Process User Process
Process
A B
A T

Other User Processes

Any other system process (the Network Control Process, for example)
1s a son of the roort process.

PROCESS CREATION

When a process 1is ¢reated, it is placed in the raady state, with a
priority equal to that of the process which created it. All the
processes created by a given process can be thought of as existing in
a subtree. Many of the process management calls can affect the entire
subtree of a process as well as the process itself.

PROCESS CONTROL

Three system calls are provided for explicit control of a process.
These calls allow a process to kill, suspend (block), or activate

any other user process in the system. Process handling calls are not
allowed on Operating System processes.

PROCESS SCHEDULING

Process scheduling is based on the priority established for the
process. The system usually attempts to execute the highest priority

ready process. Once it is executing a process loses the CPU only
under the following condicticns:

*

The running process beccmes blocked (during I/0, for example).
* The running process lowers its priority below that of another
ready process or sets another process’s prioricy to be higher
than its own.

The running process yields the CPU to another process.

The running process activates a higher priority process or suspends
itself.

Page 35

l-Mar-82 Operating System Reference Manual Confidencial

The running process makas any Operating System call whenm a higher
priority ready process exiscs.

The running process causes code to be swapped or its stack to be
expanded.

Because the Operating System currently cannot seize the CPU from an
exscuting process except in the cases noted above, background processes
should be liberally sprinkled with YIELD CPU calls.

When the schedular is invoked, it saves the gtate of the current process

and selects the next process to run by examining its pool of ready processes.
If the new process requires code or data to be swapped in, the memory
manager process 1s launched. If the memory manager is already wotrking om a
process, the scheduler selects the highest priority process in the ready
quaue that does not need anything swapped.

PROCESS TERMINATION

A process terminares when it hits its “END.’ stacement, when ir calls
TERMINATE PROCESS, when gome proceas calls KILL PROCESS on it, when its
father process terminates, or when it runs into an abmormal conditiom.
When a process terminates, a "terminate" exception coudicion is
signalled on the calling process and all of the processes it has
created. A process can declare an exception handler for this

condition to’ insure that its house is in order before its demise.

Termination involves the following steps:
l. Signal the SYS_TERMINATE exception on the current process.
2. Execute the user’s exception hindler (1f any).

3. Send the SYS_SON TEEM event to the father of the current process
if a local event channel exists.

4. Instruct all sons of the current process to terminaca.
5. Close all open files, data segments, and event channels.
6. Wait for all che somns co finish termination.

7. Release the PCB and return to the scheduler.

A process can protect itself from terminatioun by disabling the
“terminate” excsption. Under aormal circumstances, however, a

process should cooperate with the Operating System by viewing the
terminate exception as an opportunity to clean up its act before it

is terminated. If a process disables the terminate exceptilon and then,
illogically, calls TERMINATE PROCESS, the Operating SysCem forces the
procesa to terminate.

Page 36

1=Mar=-82 Operating System Reference Manual Confidential
PROCESS SYSTEM CALLS

MAKE PROCESS (Var ErrNum:Integet;
Var Proc_id:Longlnt;
Var ProgFile:Pathname; (* PathName = STRING{255] *)
Var EntryName:NameString; (* NameString = STRING[20] *)
Evnt_chn_refaum:Integer);

Errium: Error indicator

Proc_id: Process identifier (globally unique)
ProgFile: Process file name

EntryName: Program entry point

Evat_chn_refpnum: Communication chamnel between calling process
and cteated process

A process 1s born when another process calls MAKE PROCESS. The new
process executes the program identified by the pathname, progfile.
If progfile is a null character string, the name of the calling process’s

program file is used. A globally unique identifier for the created
process 1is returned in proc_id.

Evat_chn refnum is an event channel supplied by the calling process
(event channels are discussed later). The COperating System uses the
event channel identified by evnt_chn refoum to send the calling process
events regarding the created process " (for example, 5YS_SON_TERM).

If ewnt_chn_refnum ia zero, the calling process is oot " informed when
such evenrs are produced.

Entryname, if non-mull, specifies the program entry point where execution
is to begin. Because alternmate entry points have not yet been defined,
this parameter is currently unused.

Any error encountered during process creation is reported in ErrNum.

Page 37

l-Mar=82 Operating System Reference Mamual Confidential

The following example uses Operating System calls that have not been
fully discussed yer. It should, however, provide an example of
process and event management.

PROCEDURE ExecuteProgram;
CONST CannotOpenProgFile=130; (* error returned by MAKE PROCESS *)

VAR PName:FPathName; (* pathname of program to execute *)
Null Entry:NameString; (* null entry point name *)
ErrarCode: INTEGER; {(* Error return for system calls %)
Son._I1d:LONGINT; {* 1d of new procesa for program *)
ec Tefnum: INTEGER; (* ret:urned by WAIT EVENT CHN *)
I:em event:r_eventblk; (* SYS SON_TERM' event block *)
even.t_ptr.p_r_eveutblk, (* poin:er To term event *)
comm chan: INTEGER; (* refoum of commnication channel for somns *)
Son Wait Lisc:t waitlist; (* record for WAIT_EVENT CHN *)
oull ec:PathName; (* pull exception pathname for OPEN EVENT CHN *)
oull excep:t_ex name; (* null exception name *)
BEGIN
Null En:ry.- ‘s (* alternate entry points are currently no—ops *)
null ec: ;

aull ._excep:®= "
evem:_pl:r -@tem _event ;
WriteDialog(‘Execute what file? °);

(* WwriteDialog opens a dialog box, sets its
height, and writes the string in it *)
ReadDialog(poname); {* ReadDialog gets che program file name from

the dialog box using EventAvail and
GetNextEvent supplied by the Window Manager *)
IF {pname<>’ ‘) THEN (* if pname is mll, quit *)
BEGIN '
OPEN_EVENT CHN(ErrorCode,Null ec,Comm | Chan,¥ull excep,TRUE (* receive *));
T(* set up communication channel for process
that will run the program pname *)
WITE Som Wait List DO
BEGIN
Length:=1;
refnum{ 0] :=Comn_Chan;
END;
MAKE PROCESS(ErrorCode Son_id,pname,Null Entry,coum chan};
IF (ErrorCode-CannotOpenProgfile) THEN
WriteDialog(CONCAT (pname, " not found.’)};
SETPRIORITY_FPROCESS(ErrotCede MY ID, 1);
(¥ wait at low priority for son to terminate *)
WAIT EVENT CEN(ErrotCode,Son_Wait_List,ec_refoum,event_ptr);
SETPRIORITY PROCESS(ErrorCode,MY_1ID, zoo).
(* return to normal priority *)
END;
END;

Page 38

1-Mar-82 Operating System Reference Manual Confidentisl

TERMINATE PROCESS(Var ErrNum:Integer;
Event_ptr:P_S Eventblk)

Errium: Error indicator
Event_ptr: Information sent to process’s creator

The life of a process is ended by TERMINATE PROCESS. This call
causes a "terminate" exception to be signalled on the calling process
and on all of the processes it has created. The process can

declare its own "terminate" exception handler to handle whatever
cleanup it needs to do before it is completely terminated by the
system. When the terminate exception handler is entered, the
exception information block comntains an integer that describes

the cause of the process termination:

Excep_Data[0] =0 Process called TERMINATE PROCESS
1 Process executed the "END.’ statement
2 Process called KILL PROCESS on itself
3 Scme other process called KILL PROCESS on

the terminating process
4 Father process is terminating
If the terminating process was created with a communication channel,
event-ptr points to the event text information that the Operating System
sends to the process’s creator. The event type in this case is SYS_SON_TERM.
P_s_eventblk is a pointer to an s_eventblk. S eventblk is defined as:

CONST size etext = 9; (* event text size = 40 bytes *)

TYPE t_event_text = ARRAY (0..size_etext] OF Longlnr;
s_eventblk = t_event_text;

If a process calls TERMINATE PROCESS twice, the Operating System forces it to
terminate even if it has disabled the terminate exception.

Page 39

l=Mar-82] Operating System Reference Manual Confidential

INFO_PROCESS (Var ErrNum:Integer;
Proc_Id:LongInt;
Var Proc_Info:ProcInfoRec);

ErcMum: Error indicator

Proc_Id: Global identifier of process
Proc_Info: Information about the process identified by Proc_id

A process can call INFO_PROCESS to get a variety of informatiom about
any process known to the Operating System. Use the function My _Id to
get the Proc_id of the calling process. ProclafoRec is defined as:

TYPE ProcInfoRec = RECORD
ProgPathname:Pathname;
Global id :Longint;
Priority 1l..255;

Stace s (PActive,PSuspended ,PWaiting);
Data L 1n :Boolean
END;

D-ta L_In indicates whether the data spnce of the process is currently in
nenory.

The following procedure gets some of this informacion about a process
and displays 1ic:

PROCEDURE Display_Info(Proc_Id:LONGINT);
VAR ErrorCode:INTEGER;
Info_Rec:ProclnfoBec;
BEGIN
INFO_PROCESS(ErrorCode ,Proc_Id,Info_Rec);
IF (ErrorCode=100) THEN
WRITELN(Attempt to display info about nonexistent process.’)
ELSE
BEGIN
WITH Info Rec DO
BEGIN
WRITELN(’ program name: ‘,ProgPathName);
WRITELN(’ global id: ‘,Global_id);
WRITELN(’ priority: ,ptiol.'il:y).
WRITE(’ state: ‘)
CASE Stace QF
PAccive: WRITELN(active’);
PSuspended: WRITELN('suspended’);
PWaiting: WRITELN{ waiting’)
END
END
END
END;

Page 40

l=Mar-82 Operating System Reference Mamual Confidential

KILL PROCESS (Var ErrNum;Integer;

Proc_ld:Longlnt)
ErrNum: Error indicator
Proec_Id: Process to be killed

KILL PROCESS kills the procegs referred to by proc_id and all of
the processes in its subtree. The actual termination of the process
does not occur until it is in cne of the following states:

* Executing in user mode.

* Stopped due to a SUSPEND PROCESS call.

* Stopped due to a DELAY TIME call.

* Stopped due to a WAIT_EVENT CHN or SEND EVENT CHN call, or
READ DATA or WRITE DATA to a pipe.

Page 41

l~Mar-82 Oparating System Reference Manual Confidential

SUSPEND PROCESS {(Var ErrNuw:Integer;

Proc_id:Longlnt;

Susp_Family:Boolean)
ErrNum: Error indicators
Proc_Id: Process to be suspended

Susp_Family: If true, suspend the entire process subtree

SUSPEND_PROCESS allows a process to suspend (block) any other process
in the system. The actual suspension does not gccur uuntil the
procass referred to by prog id is in ona of the following states:

* Exacuting in user mode.

* Stopped due to a DELAY TIME call.
* Stopped due to a WAIT_EVENT CHN call.

Neither expiration of the delay time nor reaceipt of the awaited event
causes a2 suspended process Co resume sxecution. SUSPEND _PROCESS {is
the only direct way to block a procsss. Processes, however, can

become blocked during I/0, and by the timer (see DELAY TIME), and for
manoy other reasons.

If susp family i3 true, the Operating System suspends both the process

referted to by proc_id and all of icts descendents. If susp_family is
false, ouly the process identified by proc_id is suspeunded.

Page 42

1-Mar-82 Cperating System Reference Manual Coufidential

ACTIVATE PROCESS{Var ErrMum:Integer;
Proc_ld:Longlat;
Act_Family:Boolean)

Errium: Error indicator
Proc_Id: Process to bDe activated
Act_TFamily: If true, activate the entire process subtree

To awaken a suspended process, call ACTIVATE PROCESS. A process can
activate any other process in the system. Note that ACTIVATE PROCESS can
only awaken a suspended process. If the process i1s blocked for

some other reason, ACTIVATE PROCESS cannot unblock it. If act_family

is true, ACTIVATE PROCESS also activates all the descendents of the
process referred to by proc_id.

Page 43

1=-Mar-82 Operating System Reference Mamual Confidential

SETPRIORITY_ PROCESS(Var ErrNum:Integer;
Proc_ld:Longlnt;
New_Priority:Integer)

ErrNum: Error indicatoer
Proc id: Global id of process
New Priority: Process’s new priority number

SETPRICRITY_PROCESS changes the scheduling prioricy of the process
referred to by proc_id to new_priority. The higher the priority value
(which must be between 1 and 255), the more likely the process is

to be allowed to execute. Because (Qperating System processes execute
with priorities between 200 and 250, it is suggested that applications
execute at lower priorities.

Page 44

http://new_prJ.ori.ty

l=Mar=82 Operating System Reference Manual Confidential

YIELD_CPU(Var ErrNum:Integer;
To_Any:Boolean)

Errium: Error indication
TO_Any: Yield to any process, or only higher or equal prioricy

If To_Any is false, YIELD CPU causes the calling process to yield the
attention of the system to any other ready=to=execute process with an
equal or higher pricrity. 1If To Any is true, YIELD CPU causes the
calling process to yleld the CPU to any other ready process. If no
such process exists, the calling process simply continues execution.
Successive yields by processes of the same priority result in a
"round-robin" scheduling of the processes. Background processes
should use YIELD CFU generously to allow more urgent processes to
execute when they need to.

MY _ID

MY ID is a function that returns the unique global identifier (a longint)

of the calling process. A process can use My Id to perform process handling
calls on icself.

SerPriority Process(Errnum,My Id,1C0)

sets the priority of the calling process to 100.

Page 45

1-Mar-82 Operating System Reference Manual Confidential

The following little programs illustrate the use of most of the

process management calls described in this chapter. The program FATHER
creates a son process, and lecs it run for awhile. It chen gives you

a chance to activate, suspend, kill, or get information about the somn.

PROGRAM Father;
USES (*$U0 Source:SysCall.Obj*) SysCall;

VAR ErrorCode: INTEGER; (* error returns from system calls *)
proc_id:LONGINT; {(* process glohal identifier *)
progname:Pathname; (* program file to execute *)
oull:NsmeString; (* program entry point *)

Info Rec:ProclnfoRec; (* {nformation about process *)
1: INTEGER;
Answer:CHAR;

BEGIN

ProgName:="SON.OBJ"; (* cthis program is defined below *)

Null:=’’

MAKE PRDCESS(ErrorCode Proc_Id,ProgName,Null,0);

FOR 1:=l TO 15 DO (* idle for awhile *)

. BEGIN

WRITELN("Father executes for a moment.’);
YIELD CPU(ErrorCode,FALSE); (* lat son Tum *)
END;
WRITE('K(11l S5(uspend A(ctivate IL(nfo”);
READLN(Answer);
CASE Angwer OF
‘K, ks KILL PBOCESS(ErrorCode,Proc Id);
,'8°: SUSPEND_PROCESS(ErrorCode,PToc_Id,TRUE (* suspend family *));
'A’,’a’: ACTIVATE . PROCESS(ErrorCode, Proc Id,TRUE (* activate family *));
i": BEGIR
INFOQ PROCESS(EerrCode Proc Id,Info R.ec),
WRITELN('Son’ ‘s name is ‘,Info Rec.ProgPathName).
END;
END;
IF (ErrorCode<>0) THEN WRITELN(Error ',ErrorCodae,’ during process management.’);
END.

The program SON is:

PROGRAM Sonj;
USES (*SU Source:SysCall.Obj*) SysCall;
VAR ErrorCode:INTEGER;
cull:NameScring;
3EGIN
WHIIE TRUE DO
BEGIN
WRITELN(’Son axecutes for a moment.);
YIELD CPU(ErrorCode,FALSE); (* let father process zua *)
END;
END.

Page 46

1-Mar—-82 Qperating System Reference Manual Confidential

CHAPTER 3

MEMORY MANAGEMENT

INDETOdUEELon « « « « = » + = « = « s « o s ¢ o + o+ 48
A Limired Eardware Perspective . . « +» s « « » « o+ 48
Data SEEMENES + « + o o o s s o o o s s s ¢ o s o 48
The Logical Data Segment Number . . « « &+ o« & + o 49
Shared Data SEQMENES « - « « s « o o o + o o » o o 49
Private Data SEgmENCS .« o« « o o+ o » o =+ s o » o o &9
Code SEEMENLS =+ 4+ o o » o » « o o o ¢ = o s o o s 50
The Process Stack .+ « +« + o+ & . e e s v =« 30
Swa.pping 2 & & 8 8 % 8 § 4 w8 8 s s e & & & s = » 51
Memory Management System Calls « + « o o o o s o o 32
MAKE—DAIASEG - [] - - - - - L[] - - L] . L] » L] - - L] 52
KIU- DuAsEG L] - - - - - - - - . L . » L) * L2 . » 53
OPEN DATASEG « « « « v ¢ o o o o o s o a s o+ o 34
CLOSE DATASEG « « « o o o s o s o o o s s s o o 33
FLUSH DHASEG L] - - - - L] L] L) [] L] L] - - - - . L] 56
SIZE DATASEG + « = » s o o « o o a o s 2 o o o s 57
INFO-DHASEG a - - - . - - . - [] L] * 4 . » - - . 58
INFO LDSF - &« = & = = & o o« = B
SETACCESS DATASEG + « + = =« v ¢ o o o s o o » » 60
BIMD DATASEC « + + « « « s o s » ¢ » o o o o « &« Bl
UNBIm_DATASEG - . - . L] . - L] - . L] L] - L] L] - L 6l

Page 47

l-Mar-82 Operating System Referenca Mamual Confidencial

MEMORY MANAGEMENT OVERVIEW

INTRODUCTION

Each process has a set of code and data segments which must be in
physical memory during execution of the process. The transformacion
of the logical address used by the process to the physical address
used by the memory controller to access physical memory is handled by
the memory management unic (MMU).

A LIMITED HARDWARE PERSPECTIVE

Addresses in LISA have three parts: a domain (context) number, a
hardware segment number, and an offset. A hardware segment is a
contiguous logical address space with a discinct address protection.
The hardware mapping registers determinae each hardware segment’s type,
length (in pages of 512 bytes), and origin in physical memory. The
segment type {ReadOnly, ReadWrite, or Stack) controls access to that
segment.

Each gsegment can have up to 128 Kbytes of memory. The Operating System
ptovides data segments largar than 128 Kbytes by allocating adjacent
MMI registers to a single logical segment. 128 segments are

capped by a single domain, so each of the four domains provides a
cache of an entire segment map. The Operating System runs in domain O;
application programs can operate in domaims 1, 2, or 3. The use of
domains speeds up process switching.

DATA SEGMENTS

Each process has a data segment that the Operating System
automatically allocates to it for use as a stack. The stack

segment’s internal structures are managed directly by the
hardware and the Operating Sysctem.

A process can require additional data segments for such things as
heaps and process to process communication. These added requirements
are made known to the Operating System at run time. The Operating
System views all data segments except the stack as linear arrays of
bytes. Therefore, allocation, access, and interpretation of

structures within a data segment are the tesponsibility of the
process.

The 68000 hardware requires that all data segments that are part of
the process’s working set be in physical memory and mapped by
harduare segment registers during execution of the process. It is
the responsibility of the process to ensure that this requirement
is met.

Page 48

1=Mar=82 Operating System Reference Manual Coufidential

THE LOGICAL DATA SEGMENT NUMBER

Besides the stack segment, a process can have up to seven data
segments in its working set at amy given time. Other data
segmencs can be available to the process, but not actually be
members of the working set. To inform the Operating System

that it wants a certain data segment to be available, the process
associates that segment with a "logical data segment oumber” (LDSN).
When the process wants the data segmenat placed in memory and made
a wember of the working set, it "binds" that segment to its
associatad LDSN. The LDSN, which has a valid raoge of | to 7,

is local to the calling process. The process uses the LDSN to
keep track of where a given data segment can be found. More than
one data segment cau be 3associated with the same LDSN, but oaly
one such segment can be bound to an LDSN at any instant amd thus
be a member of the working set of the process.

SHARED DATA SEGMENTS

Cooperating processes can share data segments. The segment

creator assigns the segment a unique name (a file system pathname).

All processes that want to share that data segment must then use the same
segment name. If the shared data segment contains address pointers

to segments, then the coocperating processes must also agree upon a

common LDSN to be associated with the segment. This LDSN is

transformed by the Operating System into a specific mapping register,

so all logical data addresses referencing locations within the data
segment are consistent for all processes sharing the segment.

As an example of the use of shared data segments, consider the
following situvation: a process creates five otLher processes and
wants to use a different data segment for commumication with each of
them. The process can associate and bind the five data segments with
LDSN values 1 to 5. Since it can access all five gegments at will,
this method can have performance advantages, but a&ll five data
segments must be in memory during execution. If on the other hand,
the process associates all five data segments with the same LDSN,
ouly one such segment must be in memory at amy time, but the
process must biod aod unbind the segments to the LDSN whenever

a specific segment is needed. The application designer m:st

weligh the advantages and disadvantages of each method for the
application being developed.

PRIVATE DATA SEGMENTS

Data segments can also be private to a process. In thig case, the
maximum size of the segment can be greater than 128 Kbvtes. The
actual maximum size depends on the amount of physical memory in
the machine and the mumber of adjacent LDSN’s available to map the
segment. The process gives the desired segment size and the base
LDSN to use to map the segment. The Memory Manager then uses
ascending adjaceut LDSN’s to map successive 128 Kbyte chunks of

Page 49

l=Mar=82 Operating System Referance Mamial Confidential

the segment. The process must insure that encugh consecutive LDSN's
are available to map the entire segment.

Suppose a process has a data segment already bound to LDSN 2. If
the program tries to bind a 256 Kbyte data segment to LDSN 1, the
Operating System retusms an error because the 256 Kbyte segment
ueeds two consecutive free LDSN's. Instead, the program should
bind the segment to LDSN 3 and the system implicitly also uses
LDSN 4. 1If the program has no bouund LDSN's, it can start its
heap segment at LDSN 1, and as the heap grows, it can expand
upward through cthe 7 LDSN’s.

CODE SEGMENTS

Division of a program intoc multiple code segments (swapping units) is
dictated by the programmer. If a program is so divided, the Linker
creates a jump table to insure chat intersegment procedure references
are handled properly. The MMU registers can map up to 116 code segments.
The allocaticn of the register numbers is giveu in the Process Structure
section of the Process chapter.

A JSR, BTS, or JMP.L to a non—-resident code segment causes a bus error
which results in a trap to the Operating System (a software
implemencation of absence traps). The Operating System brings the

code segment into physical memory and returns control to the process,
allowing the procedure refarence to coutinue.

THE PROCESS STAX

Because the Operating System sometimes needs to scan the stack of a
process, certain couventions must be observed:

* Register A/ is the stack pointer of the process.

* Register A6 1s the link register for the process stack.

* All procedures must execute the LINK instruction using A6 as the
link register before anmy local data 1s placed on the stack or
another procedure call is executed.

These coaventions are obviously hidden from the programmer’s view in
high level languages, but must be followed by assembly language

programmers.

Stack expansion is handled automatically by the Operating System.

Page 50

SWAPPING

When a process executes, the following segments are required to be in
paysical memory and mapped by mapping registers:

* The current code segments being executed
* All the data segments in the process working set.

The Operating System insures that this winimum set of segments is i{n
physical memory before the process is allowed to execute. If a
required segment is not in memory, a segment swap=in request

is initiated. In the simplest case, this request ouly requires

the system to allocate a block of physical memory and to read in Che
segment from the disk. In a worse case, the request may require that
other segmenrs be swapped out first to free up sufficient memory. A
clock algorithm 18 used to determine which segments to swap out or
replace,

Page 51

1-Mar-82 Operating System Reference Maaual Coufidencial

MEMORY MANAGEMENT CALLS

MAKE DATASEG (Var ErrNum:Integer;
Var Segname:Pathname;
Hem_s:l.ze, Disk_Size:Longlnt;
Var RefNum:Integer;
Var SegPtr:Longlnc;
Ldsa:Integer)

ErrMum: Error indicator

Segname: Pathname of data segment

Mem Size: Bytes of memory to be allocated to data segment
Disk_Size: Bytes on disk to be allocated for swapping segment

RefNum: Identifier for data segment
SegPtr Pointer to ¢ontents of data segment
Ldsa: Logical data segment number

MAKE DATASEG creates the data segment identified by the pathname,
segname, and opens it for immediate read=write access. Segname
is a true file system pathname. If segname is mll, che data
segmant can be accessed only by the calling process; otherwise,
the segname allows the segment to be shared with any process in
the system.

The parameter, Mem size, determines how many bytes of main memory
the segment is allocated. The actual allocation takes place in
terms of 512 byte pages. If the data segment is private {segname
i3 mull), Mem size can be greater than 128 Kbytes, but you must
ingure that encugh consecutive LDSN‘s are free to map the entire
segment.

Digsk_size determines the numbar of bytes of swappiog space to be
allocated to the segment on disk. If Disk size 1s less than Mem 3size,
the segment cannot be swapped cut of main memory. In thig case the
segment iz memory resident until ic is killed or until its size in
memory becomes less than or equal to its disk_size (see SIZE DATASEG).

The calling process associates a logical data segment mumber {Ldsn)

with the daca segment. If this Ldsu is already bound to another data
segment, Che call returns an error.

Refnum is returned by the system to be used in amy further references
to the data segment. The Operating System also raturns segptt, an
address pointer to be used to reference the coutents of the segment.

Any error conditcions are returned in Errium.

Page 52

l=Mar-82 Operating System Referemce Maoual Confidential

KILL DATASEG (Var ErrNum:Integer;
Var Segname:Pathname)

ErrNum: Error indicator
Segname: Name of data segment to be deleted

When a process is finished with a data segment, it can issue a
KILL DATASEG call for that segment. If any process, including

the calling process, still has the data segment open, the actual
deallocation of the segment is delayed until all processes have
closed it (see CLOSE_pAIASEG). During the interim period, however,
after a KILL DATASEG call has been issued but before the segment
is actually deallocated, no other process can open that segment.

KILL_DATASEG does not affect the wmembership of the data segment in

the working set of the process. The refnum and segptr values are
valid until a CLOSE DATASEG call is issued.

Page 53

l=-Mar-82 Operating System Reference Manual Confidential

OPEN_DATASEG (Var ErrNum:Integer;
Var Segname:Pathname;
Var RefNum:Integer;
Var SegPtr:Longlnt;
Ldsa:Integer)

Erthum: Ertor indicator

Segname: Name of data segment to be opened
RefNum: Identifier for data segment

SegPrr Pointer to contents of data segment
Ldsn: Logical data segment number

A process can open an existing data segment with OPEN DATASEG. The
calling process must supply the name of cthe data segment (segname)
and the logical data segment mumber to be bound te it. The logical
data segment number given must not have a data segment already bound
to it. The segment’s name is determined by the process which creates
the data segment; it canmot be oull.

The Operating System returns both refnum, an identifier for the calling
process to use in future references to the data segment, and segptr,
an address pointer uged to reference the contents of the segmenc.

Whan a data segment is opened, it immediately becomes a member of the
working set of the calling procass. The access mode of the process

is Readonly. Use SETACCESS_DATASEG to change the access rights to
Readwri te. .

Page 54

l=Mar—82 Operating System Reference Manual Confidential

CLOSE_DATASEG (Var ErrNum:Integer;
Refnum:Integer)

ErrNum: Error indicatoer
Refnum: Data segment identifier

To remove a data segment from the working set of a process, call
CLOSE_DATASEG. The data segment referred to by refnum is severed
from the context of the calling process, refnum i{s made invalid, and
any reference to the data segment using the original segptr will
have unpredictable results. If refnum refers to a local data segment
(one created with a null segment name), CLOSE DATASEG also deletes
the data segment. If the data segment is bound to a logical data
segment number, CLOSE_DATASEG also frees that LDSN.

The following procedure sets up a heap for LisaGraf using the memory
management calls:

PROCEDURE InitDataSegForLisaGraf;

CONST HeapSize=16384; (* 16 KBytes for graphics heap *)

VAR HeapBuf:LONGINT; (* pointer to heap for LisaGraf *)
GrafHeap:PathName; (* data segment path name *)
Beap_Refnoum:INTEGER; (* refonum for heap data seg '*)
ErrorCode : INTEGER;

FUNCTION HeapError(hz:THz; BytesNeeded:INTEGER):INTEGER;

BEGIN (* handle heap expansion errors *)

WRITELN(Heap is full' Need “,BytesNeeded,’ bytes.’);

HeapError:=0;

END;

BEGIN

GrafHeap:="grafheap”;
OPEN_DATASEG(ErrorCode,GrafHeap,Heap_Refnum,HeapBuf,l);
IF (ErrorCode=0) THEN (* grafheap already exists! *)
BEGIN
RILL DATASEG(ErrorCode,GrafHeap);
CLOSE . DATASEG(ErrorCode ,Eeap_Refnum);
END; -
MAKE DATASEG(ErrorCode,GrafHeap,HeapSize,Heap_RefNum,HeapBuf,l);
InitHeap(POINTER(HeapBuf) ,POINTER(HeapBuf+HeapSize),@HeapError);
END;

Page 55

1=Mar=82 Operating System Reference Manual Confidencial

FLUSH_PAIASEG (Var ErrNum;
Refnum:Integer);

Errfum: Error indicator
Refnum: Data segment identifier

FLUSH_DATASEG writes the contents of the data segment identified by
refnum to the disk. This call has no effect upon the memory residence
or binding of the data segment.

Page 56

l=Mar=-82 Operating System Reference Manual Confidential

SIZE DATASEG (Var ErrNum:Integer;
Refnum:Integer;
deltaMemSize:Longlnt;
Var NewMemSize:Longlnt;
deltaDiskSize:Longlnt;
Var NewDiskSize:LongInt)

Errium: Error indicator

Refnum: Data segment identifier

deltaMemSize: Amount in bytes of change in memory allocation
NewuMemSize: New actual size of segment in memory

deltaDiskSize: Amount in bytes of change in disk allocation
NewDiskSize: New actual disk (swapping) allocation

SIZE_DATASEG changes the memory and disk space allocations of the data
segment referred to by RefNum. Both deltaMemSize and deltaDiskSize can

be either positive, negative, or zero. The changes to the data segment
take place at the high end of the segment and do not destroy the contents
of the segment., Because the actual allocation i3 done Iin terms of pages
(512 byte blocks), the newMemSize and newDiskSize returned by SIZE DATASEG
may be larger than the oldsize plus deltaSize of the respective areas.

If the NewDiskSize is less than the NewMemSize, the segment cannot be
swapped out of memory. The application programmer should be aware of

the serious performance implications of forcing a segment to be memory
resident. Because the segment cannot be swapped out, a new process may

not be able to get all of its working set into memory. To avold thrashing,
each application should insure that all of its data segments are

swappable before it relinquishes the attention of the processor.

If the necegssary LDSN‘s are available, SIZE DATASEG can increase the
size of a private data segment beyond 128 Kbytes.

Page 57

1-Mar-82 Operating System Reference Marual Confidential

INFO_DATASEG (Var ErrNum:Integer;
Refnum:Integer;
Var DsInfo:DsInfoRec)

ErrNum: Error indicatoer
Refnum: Identifier of data segment
DsInfo: Attributes of dara segment

INFO_DATASEG returns information about a data segment to the
calling process. The structure of the dsinforec record is:

RECORD
Mem Size:LongInt (* Bytes of memory allocated to data segment *);
Disc_Size:LongInt (* Bytes of disk space allocated to segment *);

NumbOpen:Integer (* Current open count *);
Ldsn:Integer (* Ldsn for segment binding *)s
BoundF:Boolean (* True if segment 1s bound to ldsn *),;
PresentF:Boolean (* True if segment 1s present in memory *);
CreatorF:Boolean (* True if the calling process is the creator ¥)

(* of the segment *);
REWAccess:Boolean (* True if the calling process has Read/Write *)
END;

Page 58

l=Mar=82 Operating System Reference Manual Confidential

INFO_LDSN (Var ErrNum:Integer;
Ldsn:Integer;
Var RefNum:Integer);

ErrNum: Error indicator

Ldsn: logical data segment mumber
RefNum: data segment identifier

INFO_LDSN returns the refnum of the data segment currently bound to Ldsn.
You can then use INFO_DATASEG to get information about that data segment.
If the ldsn specified is not currently bound to a data segment, the refnum
returned is =-l.

Page 59

1-Mar-82 Operating System Reference Manual Confidential

SETACCESS_DATASEG (Var ErrNum:Integer;
Refnum:Integer;
Readonly:Boolean)

Errium: Error indicator
Refnum: Data segment identifier
Readonly: Access mode

A process can control the kinds of access it is allowed to exercise
on a data segment with the SETACCESS_DATASEG call. BRefnum is the
identifier for the data segmant. If readonly is true, an attempt by
the process to write to the data segment results in an address

error exception condition. To get readwrite access, set readonly to
false.

Page 60

http://faJ.se

l=Mar=-82 Operating System Reference Manual Confidential

BIND_DATASEG(Var ErrNum:Integer;
RefNum:Integer);

UNBIND DATASEG(Var ErrNum:Integer;
RefNum:Integer);

ErrNum: Error indicator)
RefNum: Data segment identifier

BIND _DATASEG binds the data segment referred to by refnum to irs
associated logical data segment number{s). UNBIND DATASEG unbinds
the data segment from its ldsn’s. BIND DATASEG causes the data
segment to become a member of the current working set. At the time
of the BIND DATASEG call, the necessary ldsn’s must be available.
UNBIND DATASEG frees the associated ldsn’s. A reference to the
contents of an unbound segment gives unpredictable results.
OPEN_DATASEG and MAKE DATASEG determine which ldsn‘s are associated
with a given data segment.

Page 61

1-Mar-82 Operating System Reference Manual Confidential

Page 62

l=Mar-82

CHAPTER 4
EXCEPTIONS AND EVENTS

Introduction

Exceptioﬂs LI T S T

Syatem Defined Exceptions

Exception Handlers

EVents « « « o o ¢ & &

Event Channels
The System Clock . + « « »

Exception Management System Ca

DECLARE_EXCEP EDL .
DISABLE_EXCEP . . .
ENABLE EXCEP
INFO EXCEP
SIGNAL EXCEP
FLUSH_EXCEP . . .

Event Management System Calls

MAKE EVENT CHN . . .
KILL EVENT CHN . . .
OPEN EVENT CHN . . .
CLOSE EVENT CEN . .
INFO EVENT CHN + . .
WAIT_EVENT CHN . . .
FLUSH EVENT CEN .
SEND EVENT CHN . .
Clock System Calls .
DELAY TIME
GET TIME
SET_LOCAL TIME_DIFF
CONVERT TIME

. s s .

» » L] . -

e o 2 ® * e« @&

Operating System Reference

lls.....

e % e e o .
e o s o 8 a2 =
LI T I B IR
L I I]
* 2 s 8 & 8 @
4 & & 8 8
" & & s & s
L2 T B A)
" e s s s e

Page 63

Manual

« o v s * o @
Lo]
B~

Confidential

1-Map-82 Operating System Reference Manual Confidential

EXCEPTIONS and EVENTS

Processes have several ways to keep informed about the state of the
wvorld. Normal=-process—to process commnication and synchronization
can be handled using events or shared data segments. An abnormal

condition can cause an exception (interrupt) to be signalled which
the process can respond to in whatever way it sees fit.

EXCEPTIONS

Normal execution of a process can be interrupced by an exceptiomal
condition (such as division by zero or address error). Some of these
couditions are trapped by the hardware, some by the system software,
aod others can be signalled by the process itself. Exceptions have
character string names, some of which are predefined and reserved by
the Qperating System.

When an exception occurs, the system first checks the state of the
exception. The three exception states are:

* Enabled
* Queued
* Ignored

If the exception is enabled, the system next looks for a user defined
handler for that exception. If none is found, the system default
exception handler is inwvoked. It usually aborts the current process.

If the state of the exception {s queued, the exception is placed on a
queue. When that exception 13 subsequantly enabled, chis queue is
examined, and if any exceptions are found, the appropriate exception
handler 13 enterad. Processes can flush the exception queue.

If the state of the exception is ignored, the system still detects
the occurrence of the exception, but the exception is neither honored
nor queued.

Invocation of the exception handler causes the sceduler to run, so it

is possible for another process to run between the signalling of the
exception and the execution of the exception handler.

Page 66

1-Mar=-82 Operating System Reference Manual Confidential

SYSTEM DEFINED EXCEPTIONS

Certain exceptions are predefined by the Operating System. These include:
* Divisicon by zero (SYS_ZERO DIV). Default handler aborts process.
* Value out of bounds (SYS VALUE 00B). Default handler aborts process.
* Overflow (SYS_pVERFLOW). Default handler aborts process.

* Process termination (SYS_TERMINATE). This exception is signalled when
a process terminates, or when there is a bus error, address error,
illegal instruction, privilege violation, or line 1010 or 1lll emulator
error. The default handler does nothing.

Except where otherwise noted, these exceptions are fatal if they occur
within Operating System code. The hardware exceptions for parity error,
spurious interrupt, and power failure are also fatal.

EXCEPTION HANDLERS

A user—defined excepticn handler can be declared for a specific
exception. This exception handler is coded as a procedure, but must
follow certain conventions. Each handler must have two input
parameters: Environment Ptr and Exception Ptr. The Operating System
ensures that these pointers are valid when the handler is entered.
Environment Ptr points to an area in the stack containing the
interrupted environment: register contents, condition flags, and
program state. The handler can access this envirconment and can
modify everything except the program counter and register A7.

The Exception Ptr points to an area in the stack containing
information about the specific exception.

Each exception handler must be defined at the global level of the
process, must return, and cannot have any "Exit" or "Global Goto"
statements. Because the Operating System disables the exception
before calling the exception handler, the handler should re—enable
the exception before it returns.

If an exception handler for a given exception already exists when
another handler is declared for that exception, the old one beccmes

disassociated. There 1s no notion of block structured declaration of
exception handlers.

An exception can occur during the execution of an exception handler.
The state of the exception determines whether it is queued, honored,

or ignored. If the se.ond exception has the same name as the exception
that is currently being handled and its state is enabled, a nested
call to the exception handler occurs.

There is an "exception occurred" flag for every declared exception;

it is set whenever the corresponding exception occurs. This flag
can be examined and reset. Once the flag is set, it remains set

Page 65

1=-Mar—82 Operating System Reference Manual Confidential

until FLUSH EXECP is called.

The following code fragment gives an example of exception handling.

PROCEDURE Handler(Env_Ptr:p_env_blk;
Data Ptrip_ex data);
VAR ErrMur.:.NTEGER;
BEGIN

(* Env Ptr points to a record containing the program counter, *)

(* and"all registers. Data_Ptr points to an array of 12 loagints *)
(* that contain the event header and text if this handler 1is *)

(* associated with an event=call channel (see below) *)

ENABLE EXCEP(errmum,excep_name);

END;

(* this is either in a different segment or at the top level *)
Excep name:=’EndOfDoc’;
DECLARE EXCEP_HDL(errnum,excep_name,@Handler);

SIGNAL_EXCE?(errnum,excep_name,excep_data);

Page 66

1-Mar-82 Operating System Reference Manual Confidential

At the time the exception handler is invoked, the stack is:

low

address Exception Handler

Link

@Return_Exception

Data_Ptr

S RER QuI R

[

Environment Ptr

Terminate Flag

Exception Kind
Funetion Code {(fc)
Access Address (aa)
Instruction Register
Status Register
Program Counter

Exception Data Block
(Sys_Terminate exceptionm)

— e . e e o — = = e — — -

U I A

I

— e - —

Program Counter
Status Register
DO—=D7 and AQ—=A7

Exception Envirooment Block

Link

Program Counter

high I
address |
|

JUPRI U QR R

The Exception Data Block given here reflects the state of the stack
upon a SYS_TERMINATE exception. The term ex data record described
in the Interface appendix gives the variocus forms the data block can
take. The status register and program counter values in the data
block reflect the true (curreat) state of these values. The same
data in the Enviromment block reflects the state of these values

at the time the exception was signalled, not the wvalues at the time
the exception actually occurs.

In the case of a bus or address ervror, the PC can be 2 te 10 bytes
beyond the current instruction. The PC and A7 cannot be modified
by the exception handler.

When a disablaed exception is re—enabled, a queued exception may be
signalled. Irn this case, the exception envirooment reflects the state

of the world at the time the exception was re—enabled, not the time at
which the exception occurred.

Page 67

1=Mar=-82 Operating System Reference Manual Confidential

EVENTS

An event is a plece of information sent by one process to another,
generally to help cooperating processes synchronize their activities.
An event 1s sent through a kind of pipe called an event channel.

The event is a fixed size data block consisting of a header and some
text. The header contains control information; the identifier of

the sending process and the type of the event. The header is written
by the system, not the sender, and is readable by the receiving process.
The event text 1§ written by the sender; its meaning is defined by the
sending and receiving processes.

There are several predefined system event types. The predefined type
"user™ is assgigned to all events not sent by the Operating System.

EVENT CHANNELS

Event channels can be viewed as a higher—level approach to pipes.
The most important difference is that event channels deal with fixed
size data blocks, whereas pipes can handle an arbitrary byte stream.

An event channel can be globally or locally defined. A global event
channel has a globally defined pathname catalogued in the file

system, and can be used by any process to handle user defined events.
A local event channel, however, has no name and is known only by the

Operating System and the process that opened it.

A local event channel is automatically created when a process 1s created.
This channel can be opened by the father process to receive system
generated events pertaining to its son.

There are two types of event channels: event-wait and event=call.
If the receiving process is not ready to receive the event, an
event-wait type of event channel queues an event sent to it . An
event=-call type of event channel, however, treats its event as an
exception. The exception name must be given when the event=call
event channel is opened, and an exception handler for that exception
must be declared. When an event is sent to an event=call event
channel, the Operating System signals the associated exception. If
the process reading the event-call channel 1s suspended at the time

the event is sent, the event i3 queued and is executed when the process
becomes active.

When an event channel is created, the Operating System preallocates
enough space to the channel for typical interprocess communication.
If SEND_EVENT CHN is called when the channel does not have enough

space for the event, the calling prccess is blocked until enough
space is freed up.

Page 68

1-Mar-82 Operating System Reference Manual Confidential

The following code fragment uses event=wait channels to handle
process synchronization:

PROCESS A PROCESS B
Open Chn_1 to recelve; Open Chn_l to send;
Open Chn 2 to send; Open Chn 2 to receive;
REPEAT REPEAT
Send to Chn_;; Wait for Chn_2;
Wait for Chm_l; Send to Chn_l;
UNTIL AllDoue; UNTIL AllDone;

The order of execution of the two processes 1s the same regardless of the
process priorities. In the following example using event=call channels,

However, the process priorities do affect the order of execution.

PROCESS A PROCESS B

Declare Excep_l; Declare Excep_2;

Open Chn_1 to receive Excep_l; Open Chn_l to send;

Open Chn_2 to send; Open Chn_2 to receive Excep_l;
Send Chn 2;
PROCEDURE Handler; PROCEDURE Handler;

Send Chn_2; Send Chn_l;

Yield Cpu; Yi{eld Cpu;

THE SYSTEM CLOCK

A process can read the system clock time, convert to local time, or
delay its own continuation until a given time. The year, month, day,
hour, minute, second, and mill{second are available from the clock.
The system clock is in Greenwich mean time.

EXCEPTION MANAGEMENT CALLS

The event and exception management routines use several specilal types
and constants. To save space and reduce redundancy, these types are
defined only in Appendix A, and are referred to in the rest of this
chapter without much further comment.

Page 69

l=Mar-82 Operating System Reference Manual Confidentcial

DECLARE EXCEP_HDL (Var ErrNum:Integer:;
Var Excep_name:C_ex_name;
Entry_point:LongAdr)

ErrNum: Error indicator
Excep_name: Name of exception
Entry_point: Address of exception handler

DECLARE EXCEP HDL informs the Operating System that the occurrence of the
excepl:ion referred to by excep_name should cause the execution of the
exception handler whose address is given by entry point. Excep_name

is a character string name that i3 locally defined in the process and
known only to the process and the Operating System. If entry-point

is uil, the system default exception handler for that exception is

used. Any previously declared exception handler is disassociated

by this call. The exception itself is automatically enabled.

If some excep_name exceptlons are queued up at the time of the
DECLARE EXCEP_HDL call, the exception is automatically emabled and the
queued exceptiong are handled by the newly declared handler.

If DECLARE EXCEP HDL is called with an exception handler address of

@NIL and there is no system default handler for the exception, the
exception will have no handler defined.

Page 70

1=Mar-82 Operating System Reference Manual Confidential

DISABLE EXCEP (Var ErrNum:Integer;

Var Excep_name:t_ex_name;
Queue:Boolean)

ErrNum: Error indicator
Excep_name: Name of exception to be disabled
Queue: Exception queuing flag

A process can explicitly disable the trapping of an exception by
calling DISABLE EXCEP. Excep_name is the name of the exception to be
disabled. If queue is true and an exception occurs, the exceptiom is
queued and is handled when it is enabled again. If queue 1s false,
the exception is ignored. When an exception handler is entered,

the state of the exception in question is automatically set to
queued.

If an exception handler is associated through OPEN_EVENT CHN with an
event chaonel and DISABLE EXCEP is called for that exception, then:

1y 1f queue is false, and if an event is sent to the event channel
by SEND EVENT CHN, the SEND EVENT CEN call succeeds, but it is
equivalent to not calling SEND EVENT CHN at all.

2) 1f queue is true, and if an event is sent to the event channel by
SEND_EVENT CHN, the SEND_EVENT CHN call succeeds and a call te
WAIT EVENT CHN also succeeds.

Page 71

1-Mar-82 Operating System Reference Manual Confidential

ENABLE EXCEP (Var ErzNum:Integer;
Var Excep-name:t_ex_name)

ErrNum: Error indicator
Excep_name: Name of exception to be enabled

ENABLE EXCEP causes an exception to be handled again. Since the
Operating System autcmatically disables an exception when 1its
exception haudler is entered (see DISABLE EXCEP), the excepticn
haundler should explicitly re—enable the exception before it returus
to the process.

Page 72

l1-Mar—-82 _ Operating System Reference Mamual Confidential

INFO_EXCEP (Var ErrNum:Integer;
Var Excep_name:t_ex name;
Var Excep_status:t_ex_sts)

ErrNum: Error indicator
Excep_name: Name of exception
Excep_Status: Status of exception

INFO_EXCEP returns information about the exception specified by
excep_name. The parameter excep_status is a record containing
information about the exception. This record contains:

t_ex sts = RECORD (* exception status *)
Ex_occurred_f:Boolean; (* exception occurred flag *)
ex_state:t_ex state; (" exception status *)

aum_excep:integer; (* no. of exceptions queued *)
Hdl_adr:Longadr; (* exception handler’s address *)
END;

Once Ex_occurred f has been set to true, it is reset to false only by
a call to FLUSH_EXCEP.

Page 73

1-Mar-82 Operating System Reference Manual

SIGNAL EXCEP (Var ErrNum:Integer;
Var Excep_name:t_ex name;
Var Excep_data: t_ex_data)

ErrMum: Error indicator

Excep name: Name of exception to be signalled
Excep_Data: Information for exception hamdler

A process can signal the occurrence of an exception by calling
SIGNAL_EXCEP. The exception handler associated with excep_name is

Confidential

entered. It is passed excep_data, a data area containing information
about the nature and cause of the exception. The structure of this

information area is:

array[0..size_exdata] of Longint.

Page 74

l-Mar-82 Operating System Reference Manual Confidencial

FLUSH_EXCEP (Var ErrNum:Integer;
Var Excep_name:t_ex_name)

ErrNum: Error indicator
Excep_name: Name of exception whose queue 1s flushed

FLUSH EXCEP clears out the queue associated with the exception
excep_name and resets its "exception occurred" flag.

Page 75

1-Mar~82 Operating System Reference Manual Confidential

EVENT MANAGEMENT CALLS

MAKE EVENT CHN (Var ErrNum:Integer;
Var Event_chn name:Pathname)

ErrNum: Error indicatoer
Event_chn_name: Pathname of event channel

MAKE EVENT CHN creates an event channel with the name given in

event_chn name. The name must be a file system pathname; it
cannot be null.

Page 76

1=Mar~82 Operating System Referénce Manmual Confidential

KILL EVENT CHN (Var ErrNum:Integer;
Var Event_cha_name:Pathname)

ErrNum: Error indicator
Event_chn_name: Pathoame of event channel

Te delete an event channel, call KILL EVENT CHN. The actual
deletion is delayed until all processes using the event chamnel have
closed it. 1In the period between the KILL EVENT CHN ¢all and the
chaomel’s actual delecion, no processes can open it. A channel can
be deleted by any process that knows the channel’s name.

Page 77

l=Mar-§2 Operating System Reference Manual Confidential

OPEN_EVENT CHN (Var ErrNum:Integer;
Var Event_chn_name:Pathname;
Var Refnum:Integer;
Excep_name:t_ex name;

Receiver:Boclean)
ErrNum: Error indicator
Evenc_chn_name: Pathname of event channel
RefNum: Identifier of event channel
Excep_name: Exception name, if any
Receiver: Access mode of calling process

OPEN_EVENT_CHN opens an event channel and defines its attributes from
the process point of view. Refnum is returned by the Operating System
to be used in any further references to the channel.

Event_chn _name determines whether the event channel is locally or
globally defined. If it is a null string, the event chamnel is locally
defined. If event chn name is not null, it is the file system pathname
of che channel.

Excep_Name determines whether the channel is an event-wait or

event=call channel. If it is a aull string, the channel is of event=wait
type. Otherwise, the channel i3 an event-call channel and excep name

is the name of the exception that is signalled when an event

arrives in the channel. The excep_name must be declared before

its use in the OPEN_EVENT CHN call.

Receiver 13 a boolean value indicating whether the process is opening
the channel as a sender (receiver is false) or a receiver (receiver
is true). A local channel (one with a null pathname) can be opened
only to receive events.

Page 78

1-Mar-82 Operating System Reference Manual Confidential

CLOSE_EVENT CHN (Var ErrNum:Integer;
Refnum:Integer)

ErrNum: Error indicactor
Refnum: Identifier of event channel to be closed

CLOSE_EVENT CEN closes the event channel associated with refnum. ' Any
events queued in the channel remain there. The channel caonot be
accaessed until it is opened again.

Page 79

1=Mar-82 Operating System Reference Manual Confidential

INFO_»_EVENT_CHN (Var ErrNum:Integer;
Refnum:Integer;
Var Chn_Info:t_chn sts)

ErrNum: Error indicator
Refnum: Identifier of event channel
Chn_Info: Status of event channel

INFO _EVENT CHN gives a process information about an event channel.
The Operating System returns a record, chn_info, with informacion
pertaining to the channel associated with refnum. The information
incliudes:

t_chn gts =
" RECORD (* event channel status *)
Chn_type:Chn_kind; (* walt_ec or call ec *)
Num events:Integer; (* number of queued events *)
Open recv:Integer; (* number of processes reading this channel *)
Open_send:integer; {* no. of processes sending to this channel *)
Ec_name:pathname; {* exception name for event=call *)
END;

Page 80

1=Mar-82 Operating System Reference Manual Confidential

WAIT EVENT CHN (Var ErrHum:Integer;
Var Wait List:t_waitlisc;

Var RefNum:Integer;
Event_ptr:p_t_eventblk)

ErrNum: Error indicator

Wait_list: Record with array of event channels
Refnum: Identifier of channel containing an event
Event ptr: Pointer to event data

WAIT_EVENT CHN puts the calling process in a waiting state pending the
arrival of an event in one of the specified channels. Wait_list is a
pointer to a list of event channel identifiers. When an event arrives
in any of thesa channels, the process is made ready to execute. Refnum

identifies which channel got the event, and event ptr points to the
event itself.

A process can walt for any boolean combination of events. If it must
wait for any event from a set of channels, an "or" conditiom, it
should call WAIT EVENT CHN with wait list pointing to the list of
event channel identifiers. If, on the other hand, it must wait for

all the events from a set of channels. an "and" condition, then for
each channel in the set, WAIT_EVENT CHN should be called with a
wait_list pointing just to that chanuel.

The structure of t waitlist is:

Record
Length:Integer;

Refnum:Array(0..size waitlist] of Integer;
End; -

P_r_eventblk iIs a pointer to a record containing the event header and the
event text.

Currently the possible event type values are:

1 = Event sent by user process
2 - Event sent by system

If you call WAIT_EVENT CHN on an event=call channel which has queued
events, the event is treated just like an event in an event-wait channel.
1f WAIT_;VENT_FHN is called on an event=call channel which does not have

any queued events, an error 1s returned.

Page 8l

l=Mar=82 Operating System Reference Manual Confidential
FLUSE_EVENT _CHN (Var ErrNum:lnteger;
Refnum:Integer)

ErrNum: Error indicator
Refnum: Identifier of event channel to be flushed

FLUSH_EVENT CBN clears out the specified event channel. All events
queued in the channel are removed.

Page 82

l1-Mar-82 Operating System Reference Manual Confidential

SEND_ﬁVENI_gﬂﬂ (Var ErrNum:Integer;
Refnum:Integer;
Event_ptr:p_s_eventblk;
Interval:t interval;

Clktime:TiEé_yec)
ErrRum: Error indicator
Refnum: Channel for event
Eveu:_p:r: Pointer to event data
Interval: Timer for event
Clktime: time data for event

SEND- EVENT CHN sends an event to the channel specified by refnum.
Event_ptr points to the event that iz to be seant. The event
contains only the event text; the header is added by the system.

If the event is of the event—wait type, the event is queued. Otherwise

the Operating System signals the corresponding exception for the
pProcess receiving the event.

If the channel is open by several senders, the receiver can sort the
events by the process identifier which the Operating System places

in the event header. Alternatively, the senders and receiver can place
predefined identifiers in the event text which identify the sender.

The parameter, interval, indicates whether the event is a timed

event. T interval is a record containing a day and a millisecond

field. 1If both fields are 0, the event is sent immediately. If the
day given is less than 0, the millisecond field is ignored and the
time_rec record is used. If the time in the time rec has already
passed, the event is sent immediately. If the millisecond field

is greater than 0, and the day field is greater than or equal to O,

the event is sent that number of days and milliseconds from the present.
The time given in time_rec is in Greenmwich Mean Time.

A process can time out a request to another process by sending itself
a timed event and then waiting for the arrival of either the timed
event or an event indicating the request has been served. If the
timed event is received first, the request has timed out. A process
can also time its own progress by periodically sending icself a timed
event through an event=call event channel.

Page 83

1-Mar=-82 Operating System Reference Manual Confidential

CLOCK CALLS

DELAY _TIME (Var Errium:Integer;
Interval:T_interval;
Clkcime:Time rec)

ErrNum: Error indicator

Interval: Delay timer
Clktime: Time information

DELAY TIME stops execution of the calling process for the oumber

of days and milliseconds specified in the interval record. If this
time period is zero, DELAY TIME obviously has no effect. 1If the
period is less than zero, execution of the process is delayed until
the time specified by Clktime in Greemwich Mean Time. Time rec is
a record defined asg:

time rec = RECORD

Year:Integer;
Day:l..366;
Hour: "23- 123;
Minute:=59..59;
Second:0..59;
Mgec:0..999;

.END

-

Page 84

—E—————

1-Mar-82 Operating System Reference Manual Confidential

GET_TIME (Var ErrNum:Integer;
Var GMT_Time:Time rec)

ErrNum: Error indicator
GMT_Time: Time information

GET_TIME returns the current system clock time in the record GMT_Time.

time rec = RECORD
Year:lnteger;
DaY:l. 0366;
Hour:=23..23;
Minute:=59.,59;
Second:0..59;
Msec:0..999;

Page B85

1-Mar-82 Operating System Refarence Manual Confidential

SET_LOCAL TIME DIFF (Var ErrNum:lnteger;
Hour:Hour range;
Minute:Minute range)

Errdum: Error indicator
Hour: Numbet of hours difference from Greenmwich Mean Time
Minute: Number of minutes difference from Greenwich Mean Time

SET_LOCAL TIME DIFF informs the Operating System of the difference in
hours and minutes between the local time and Greemwich Mean Time (that
is, GMT-localTime). Hour and Minute can be negative.

Page 86

l-Mar-82 Operating System Reference Manual Coufidential

CONVERT TIME (Var ErrNum:Integer;
Var GMT_Time:Time_rec;
Var Local Time:Time rec;

To_gmc:Bdslean)
ErrNum: Error indicator

GMT_Time: Greenwich Mean Time
Local Time: Local time
To_gmt: Direction of time conversiom

CONVERT. TIME converts between local time and system clock time. The
system clock is in Greenwich Mean Time. To_gmt is a boolean

value indicating which direction the conversion is to go. If it is
true, the system takes the time data in local tiwme and puts the
corresponding GMT time in gmt_Time. Otherwise, it takes the time
data in gmt_Time and puts the corresponding local time in local time.
Both time data areas contain the year, month, day, hour, minute,
second, and millisecond.

Page 87

l-Mar-82 Operating System Reference Manual

CHAPTER 5

SYSTEM CONFIGURATION AND STARTUP
Syste'mS:artup.............-90

Self-Diagnostics « « « =« 2 = + o = « » & « 90
Customizing Your System . + + « « « » « » 91

Page 89

Confidential

l=Mar=82 Oparating System Reference Manual Confidential

SYSTEM CONFIGURATION AND STARTUP

SYSTEM STARTUP

Sctartup is a multi=-step operation. After the startup request is
generated, code in the bootstrap ROM executes. This code runs a

series of diagnostic tests, and signals by a beep that all is
well.

The ROM next selects a boot device. The default boot device is the
Twiggy drive 1, but this can be overridden by the keyboard or by
parameter memory. The ROM pagses the memory size, the boot device

position, and the results of the diagnostics to the loader found
on the boot device.

The loader allocates physical memory and loads three types of Operating
System segments needed during Startup, including the configurable
device drivers. It creates a pseudo—outer—process, enters the Operating

System, and passes to Startup a physical address map and some parameter
data.

Startup inherits the unmapped address space of the loader, initializes
the memory map, initializes all the Operating System subsytems, creates
the system process, then destroys the pseudo-cuter—process (itself),
passing control to the highest priority process. At this point the
boot process is complete and the ocuter shell process or the Filer is
in control.

SELF-DIAGNOSTICS

The self-test code in ROM performs an overall diagnostic check at
power—up and then executes the bootstrap routine from the disk.

The first tests initialize various system controls; MMU registers,
contrast control, parity logic, etc. TYou should hear a beep notifying
you that the startup tests have begun. A checksum is done on the ROM
itself, then all of the RAM in the system is tested for shorts and

address uniqueness. The Memory Management Unit is also tested in
this manner.

Parts of the video and parity generator/checker circuitry are tested
next. The keyboard and mouse interfaces are tested by checking various
modes of the Versatile Interface Adapter operation, and by running a
ROM/RAM test of all the processors used in the interfaces. Meanwhile,
the disk controller is running its own tests of ROM and RAM. Finally,
the RS232 port and the clock are tested.

Page 90

1=Mar-82 Operating System Reference Manual Confidential
CUSTOMIZING YOUR SYSTEM

The features and design of the system configuration program have not yet \//
been defined. '

Page 91

1-Mar-82 Operating System Refereace Manual Confidential

APPENDICES

System CallS « « « = o o « o o = s s o o s s o s o o« %

System Reserved Exception Names . . « « « s o« « « o 106
System Reserved Event Types . « « s o ¢ « o « » » o 106
ErTOr COdes « « « « o o « o o « a s o s o ¢ + « « o 107

Page 93

l=Mar—82 Operating System Reference Mamual Confidential

OPERATING SYSTEM INTERFACE

CONST
Max ename = 32; (* max length of file system object name *)
Len_exname = 16; (* exception name length *)
Size exdata = l1l; (* 48 bytes in exception data block *)
Size etext = 9 (* 40 bytes of event text *)
§ize waiclisc = 10; (* current size of wait listc *)

(* exception kind definicions for SYS_TERMINATE exception *)

call term = 0; (* process called TERMINATE PROCESS *)

ended = 1; (* process executed ‘END’ statement *)

self killed = 2; (* process called KILL PROCESS on self *)
killed = 3; {* process killed by another process *)
fthr_temm = 4; (* process’s father is terminating *)
def_div_zero = 11; (* default handler called for SYS_ZERO DIV *)
def value ocob = 12; (* default handler called for SYS VALUE GOB *)
def_ovfw = 13; (* default handler called for SYS_OVERFLOW *)
def_nmi kay = 14; (* default handler called for NMI key excep *)
def _range = 135; (* SYS_VALUE O0B due to value range error *)
def_str_index = 16; (* SYS_VALUE OOB due to string index error *)
bus_error = 21; (* bus error occurred *)

addr error = 22; (* address error occurred *)

illé—inst = 23; (* i{llagal instruction trap occurred *)
priv_ violation = 24; (* privilege violation trap occurred *)

line 1010 = 26; (* line 1010 emulator occurred *)

line 1111 = 27; (* line 1111 emulator occurred *)

div_zero = 3l; (* hardware exception kind definitions *)
value_oob = 32;

ovfw = 33;

omi_key = 34;

value_range = 35;
str_index = 36;

TYPE

Pathname = STRING[255];

E Name = STRING[Max Ename];

NameString = STRINGT20};

Accesses = (DRead, DWrite, Append, Private, Global_Access);

MSet = 3SET OF Accesses;

IoMode = (Absclute, Relative, Sequential);

Uid = INTEGER;

Info_Type = (device _t, volume_t, object_t); '

Devtype = (diskdev, pascalbd, seqdev, bItbkt, non_to);

Filetype = (undefined, MDDFFile, rooteat, freelist, badblocks,
sysdata, spool, exec, usercat, pipe, bootfile,
swapdata, swapcode, ramap, userfile, killedabject);

Entrytype = (emptyentry, catentry, linkentry, fileentry, pipeentry,

ecentry, killedentry);

Page 94

l=Mar-82

fs_info = RECORD
name:
devnum:

Operating System Reference Manual

Confidential

&_name;
INTEGER;

CASE OType:info_type OF _

device_t,

volume_t:(iochannel: INTEGER

devt:
slot_na:

devtype;
INTEGER;
£s_size: LONGINT;

vol _size: LONGINT;
blockstructured,

mounted: BOOLEAN;
opencount: LONGINT;
privatedev,

remote,

lockeddev: BOOLEAN;
mount_pending,
unmount_pending: BOOLEAN;
volname,
password:
fsversion,
volid,
volnum:
blocksize,
datasize,
clustersize,
filecount: INTEGER;

€_name H

INTEGER;

. freecount: LONGINT;

object_t:(size:

DTVC,
DTVE,
DTVS: LONGINT;
Machine id,
overmount_stamp,
master_copy_id: LONGINT; -
privileged,
write protected: BOOLEAN;
master,
copy,
scavenge flag: BOOLEAN);
LONGINT;
peize: LONGINT; (®physical size in bytes*)
lpsize: INTEGER; (*Logical page size in bytes*)
feype: filetype;
etype: entrytype;
DTC,
DTA,
Dm'
DTB: LONGINT;
vefoum: INTEGER;
fmark: LONGINT;
acmode ! mset;
nreaders,
awriters,
nusers: INTEGER;

Page 95

l=Mar-82 Operating System Reference Manual Confidential

fuid: uid;
eof,

safety_om,
kswitch: BOOLEAN;
private,

locked,

procected :BOOLEAN);
END;

ProcIafoRec = RECORD
ProgPathName:Pathname;
Global Id :LONGINT;
Priority :11..255;

State :(Pactive ,PSuspended ,Pwaiting);
Data_In :Boolean
END;
DslnfoRec =
RECORD

Mem Size:LONGINT;
Disc 8ize:LONGINT;
NumbOpen: INTEGER;
Ldsn: INTEGER;
BoundF: BOOLEAN;
PresentF:BOOLEAN;
CreetorF:BOCLEAN;
RWAccess:BOOLEAN;
END;

c_ex name = STRING(len exname]; (* exception name *)
LongAdr = “LONGINT;
t_ex state = (enabled, queued, ignored);
(* exception state *)
p_ex data = “t_ex_data;
t_ex_ " data = ARRAY [0..s1ze_axdata] OF LONGINT;
(* exception data block *)
t_ex sts = RECORD (* exception status *)
- Ex_occurred_f:BOOLEAN;
ex sr.ate t_e ex_state;
oum_excep: :INTEGER; (* no. of exceptions queued *)
Edl_ndr Longadr;

END;
P_env bik = “env_blk;
Env blk RECORD {* environment block for handler *}
PC:LONGINT; (* program counter *)
SR:INTEGER; (* status register *)

po,Dn1,D02,D3,D4,D5,D6,D7 : LONGINT;
A0,A),A2 A3 ,A4 A5,A6,AT :LONGINT
END;

Page 96

laMar=82 Operating System Reference Mamual Confidential

p_term_ex data = “"term ex_data;

term ex data = RECORD (* SYS_TERMINATE exception data block *)
CASE execp_| kind:LONGINT OF

cal%_;erm,

ended,

self killed,

kiiled,)

fthr_term:(); (* due to process terminatiecn *)

illg inst,

priv viola:ion,

line . 1010

line 1111,

def div :ero,

def value_oob,

def ovfu

def _nmi_key:

{SR:INTEGER;
PC:LONGINT);

def range,

def_str_index:(value_check:INTEGER;
upper_bound: INTEGER;
lower bound:INTEGER;
return_pc:LONGINT;
caller a6:LONGINT);

bus_error, -

addr_error:

(fun_field:PACKED RECORD (* one INTEGER *)
filler:0.,.37FF; (* Ll bits *)
r_w_flag;BOOLEAN;

1 n flag BOOLEAN;
fun ¢ L_code:0..7;
END;

access adr:LONGINT;

imst r:gis ter: INTEGER;

SR Error INTEGER;

PC] ,_ Error:LONGINT};

END;

p_bard ex data = “hard_ex datsz;
hard ex data = RECORD
CASE excep_kind:LONGINT OF
div_zero,
value_oob,
oviw:
(SR:INTEGER;
PC:LONGINT);
value_range,
str_index:
(value_check:INTEGER;
upper_pound INTEGER;
lower bound:INTEGER;
return_pc:LONGINT;
caller a6:LONGINT);
END;

Page 97

1-Mar—82 Operating System Reference Manual Confidential

I_yaitlist = RECORD

Length: INTEGER;
Refoum: ARRAY {0..Size waitlist] OF INTEGER;
END;

T_eheadar = RECORD (* event headar *)
Send_pid:LONGINT; (* sender’s process id *)
Event_type:LONGINT;

END;

t_evant_text = ARRAY [0..size etext] OF LONGINT;
p_r_eventblk = "r_eventblk;
q_pventblk = RECORD
Event header:T_eheader;
Event Text:t event text;
END;

p_s_eventblk = "3 eventblk;
s_evenctblk = ¢_event text;

t_interval = RECORD
Day: INTEGER; (* number of days *)
Millisec:LONGINT;(* number of millisecond in day *)

(* gshould be 0..86399999 *)
END; .

time rec = RECORD
Year:INTEGER;
Day:1..366;
Hour:=-23..23;
Minute:=59..59;
Second:0..59;
Msec:0,.999;
END;

Chn_kind = (wait_ec, call ec);
t chn ats = RECORD (* channel status *)
-7 Chn_type:Chn_kind;

Num events:INTEGER;

DpeE;yecv:INTEGER;

Open_send: INTEGER;

Ec_name:pathname;

END;

Hour_range = -23..23;
Minute range = ~59..59;

Page 98

l=Mar=-82 Operating System Referenmce Manual

(* File System Calls *)

PROCEDURE MAKE FILE
(VAR Ecode:INTEGER;
VAR Path:Pathname;
Label_siza: INTEGER)

PROCEDURE HAKE_PI_PE‘.
(VAR Ecode:INTEGER;
VAR Path:Pathname;
Label size: INTEGER)

PROCEDURE KILL_OBJECT
(VAR Ecode:INTEGER;
VAR Path:Pathname)

PROCEDURE RENAHE_HTTRY
(VAR Ecode:INTEGER;
VAR Path:Pathname;
VAR Newname:E name)

PROCEDURE LOOKUP
{VAR Ecode:INTEGER;
VAR Path:Pathname;
Index:INTEGER;
VAR Atcributes:Fs_Info)

PROCEDURE INFO
(VAR Ecode:INIEGER;
Refnum: INTEGER;
VAR RefInfo:Fs_Info)

PROCEDURE OPEN
(VAR Ecode:INTEGER;
VAR Path:Pathname;
VAR Refnum:INTEGER;
Manip:MSec)

PROCEDURE CLOSE_OBJECT
(VAR Ecode:INTEGER;
Refnum: INTEGER)

PROCEDURE READ DATA
(VAR Ecode:INTEGER;
Refnum;: INTEGER;
Data_Addr:LONGINT;
Count : LONGINT;
VAR Actual:LONGINT;
Mode : IoMode;
Of fset: LONGINT)

Page 99

Confidencial

1=-Mar-82 Cperating System Reference Manual

PROCEDURE WRITE_DATA
(VAR Ecode:INTEGER;
Refnum: INTEGER;
Data_Addr:LONGINT;
Count : LONGINT,
VAR Actual:LONGINT;
Modae : IoMode;
Offset:LONGINT)

PROCEDURE READ LABEL
(VAR Ecode:INTEGER;
VAR Path:Pathname;
Data_Addr:LONGINT;
Count : LONGINT;
VAR Actual:LONGINT)

PROCEDURE WRITE LABEL
(VAR Ecode:INTEGER;
VAR Path:Pathname;
Data_Addr:LONGINT;
Count : LONGINT;
VAR Actual:LONGINT)

PROCEDURE DEVICE_CONTROL
(VAR Ecode:INTEGER;
VAR Path:Pathname;
Ccode, CParm:INTEGER)

PROCEDURE ALLOCATE
(VAR Ecode:INTEGER;
Refnum: INTEGER;
Cont iguous : BOOLEAN;
Count : LONGINT;
VAR Actual:LONGINT)

PROCEDURE COMPACT
(VAR Ecode:INTEGER;
Refnum: INTEGER)

PROCEDURE TRUNCATE
(VAR Ecode:INTEGER;
Refnum:INTEGER)

PROCEDURE FLUSH
(VAR Ecode:INTEGER,;
Refnum: INTEGER)

PROCEDURE SET_SAI"ETY
(VAR Ecode:INTEGER;
VAR Pach:Pathname;
On_of£:BOQLEAN)

PROCEDURE SET_WORKING_DIR
(VAR Ecode:INTEGER;

Page 100

Confidential

l=-Mar-82 Operating System Reference Manual

VAR Path:Pathname)

PROCEDURE GET_WORKING DIR
(VAR Ecode:;INTEGER;
VAR Path:Pathname)

PROCEDURE MOURT
(VAR Ecode:INTEGER;
VAR VName:E name;
VAR Password, Devnzme:E_name)

PROCEDURE UNMOUNT
(VAR Ecode:INTEGER;
VAR VName:E_name)

PROCEDURE RESET_CATALOG
(VAR ecode:INTEGER;
VAR Path:Pathname}

PROCEDURE Get_NEXT ENTRY
(VAR Ecode:INTEGER;
VAR Ptefix,En:ry:E_Name)

{* Process Management System Calls *)

PROCEDURE MAKE PROCESS

(VAR ErrNum:INTEGER;
VAR Proc_Id:LONGINT;
VAR ProgFile:Pathname;
VAR EntryName:NawmeString;
Evat_chn_refaum: INTEGER)

PROCEDURE TERMINATE PROCESS
(VAR ErrNum:INTEGER;
Evenc_ptr:P_S Eventblk)

PROCEDURE INFO_PROCESS
(VAR ErrNum:INTEGER;
Proc 1d:LONGINT;
VAR “Proc_Info:ProcInfoRec)

PROCEDURE KI LL_PROCE ss
(VAR ErrNum:INTEGER;
Proc_Id: LORGINT)

PROCEDURE SUSPEND PROCESS
(VAR ErrNum:INTEGER;
Proc_1d:LONGINT;
Susp_Family:BOOLEAN)

PROCEDURE ACTIVATE PROCESS
(VAR ErrtNum:INIEGER;
Proc_1d:LONGINT;
Act_Family:BOOLEAN)

Page 101

Confidential

1-Mar=-82 Operating System Reference Manual

PROCEDURE SETPRIORITY PROCESS
(VAR ErrNum:INTEGER;
Proc_ld:LONGINT;
New_Prioricty:INTEGER)

PROCEDURE YIELD_ CPU
(VAR Errtoum: INTEGER;
To_Any:BOOLEAN)

FUNCTION MY_ID:LONGINT
(* Memory Management System Calls *)

PROCEDURE MAKE DATASEG
(VAR ErrNum: INTEGER;
VAR SegName:Pathname;
Mem Size,Disk Size:LONGINT;
VAR RefNum:INTEGER;
VAR SegPtr:LONGINT;
lLdsn: INTEGER)

PROCEDURE KILL DATASEG
(VAR ErrNum:INTEGER;
VAR SegName:Pathname)

PROCEDURE OPEN_DATASEG
(VAR ErrNum:INTEGER;
VAR SegName:Pathname;
VAR RefNum:INTEGER;
VAR SegPtr:LONGINT;
Ldan: INTEGER)

PROCEDURE CLOSE DATASEG

(VAR ErriNum: INTEGER;
RefNum: INTEGER)

PROCEDURE FLUSH_DATASEG
(VAR ErrNum;
RefNum: INTEGER)

PROCEDURE SIZE DATASEG
(VAR ErrNum:INTEGER;
RefNum: INTEGER;
DeltaMemsize:LONGINT;
VAR NewMemSize:LONGINT;
DeltaDigkSize:LONGINT;
VAR NewDiskSize:LONGINT)

PROCEDURE INFO_DATASEG
(VAR ErrNum:INTEGER;
RefNum: INTEGER;
VAR Dslnfoi:DsInfoRec)

Page 102

Confidential

1-Mar-82 Operating System Reference Manual

PROCEDURE SETACCESS DATASEG
(VAR ErrNum:INTEGER;
RefNum: INTEGER;
Readonly :BOOLEAN)

PROCEDURE BIND_ DATASEG
(VAR ErrNum:INTEGER;
Ldsn: INTEGER)

PROCEDURE UNBIND DATASEG

(VAR ErrNum:INTEGER;
RefNum: INTEGER)

PROCEDURE INFO_LDSN

(VAR ErrNum:INTEGER;
Ldsn: INTEGER;

VAR RefNum:INTEGER)
(* Exception Management System Calls *)

PROCEDURE DECLARE EXCEP HDL
(VAR ErtNum:INTEGER;
VAR Excep_Name:t ex name;
Entry_point:LongAdr)

PROCEDURE DISABLE EXCEF
(VAR ErrNum:INTEGER;
VAR Excep_Name:t_ex name;
Queue : BOOLEAN)

PROCEDURE ENABLE EXCEP
(VAR ErrNum: INTEGER;
VAR Excep_Name:t_ex_name)

PROCEDURE INFO_EXCEP
(VAR ErrNum:INTEGER;
VAR Excep Name:t_ ex name;
VAR Excep_status:t_ex_sts)

PROCEDURE SIGNAL EXCEP
(VAR ErrNum:INTEGER;
VAR Excep Name:t_ex name;
VAR Excep data: t_ex data)

PROCEDURE FLUSH EXCEP
TVAR ErrNum:INTEGER;
VAR Excep__Nane:t_ex_naue)

(* Event Managemart System Calls *)
PROCEDURE MAKE EVENT CHN

(VAR TErrNum: INTEGER;
VAR Event_chn_name:Pathname)

Page 103

Confidential

1=Mar-82

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

Operating System Reference

KILL EVENT_ CHN
(VAR ErrNum:INTEGER;
VAR Event chan_name: Pathname)

OPEN_EVENT CHN
(VAR ErrNum:INTEGER;
VAR Event_cho name:Pathname;
VAR RefNum:INTEGER;
VAR Excep Name:t_ex name;
Receiver:BDOLEAN)™

CLOSE_EVENT_CEN
TvaR TErrNum:INTEGER;
RefNum: INTEGER)

INFO_EVENT_CEN
(VAR ErrMum:INTEGER;
RefNum: INTEGER;
VAR Chn_Info:t_chn_sts)

WAIT EVENT CHN
“(VAR ~ErrNum: INTEGER;
VAR Wait_Lisc:it 3 waitlist;
VAR RefNum: INTEGER
Event_ptr:p r_eventblk)

FLUSH_EVENT CHN
(VAR ErrNum:INTEGER;
RefNum: INTEGER)

SEND_EVENT_CHN
(VAR ~Errium:INTEGER;
RafNum: INTEGER;
Event_ptr:p_s_eventblk;
Interval:t_interval;
Clkeime:Time_rec)

Page 104

Manual

Confidential

1-Mar-82 Operating System Reference Manual Confidential

{* Timer Function System Calls *)

PROCEDURE DELAY TIME
TvVAR ErrNum:INTEGER;
Interval:T_interval;
Clktime:Time rec)

PROCEDURE GET_TIME
(VAR ErrNum:INTEGER;
VAR GMT_Time:Time rec)

PROCEDURE SET LOCAL TIME DIFF
~ (VAR ErrNum:INTEGER;
Hour:Hour_ range;
Minute:Minute range)

PROCEDURE CONVERT_TIME
(VAR ErrNum:INTEGER;
VAR GMT_Time :Time rec;
VAR Local Time: Time_rec;
To_gme : BOOLEAN)

Page 105

1=Mar-82 Operating System Reference Manual Confidential

System Reserved Exception Names

SYS_OVERFLOW - overflow exception. Signalled if the TRAPV

instruction is executed, and the overflow
condition is on.

SYS_VALUE_OOB value ocut of bound exception. Signalled if
the CHK instruction is executed, and the value
is less than O or greater than upper bound.

SYS_ZERO_DIV division by zero exception. Signalled i1f the
DIVS or DIVU instruction is executed, and the
divisor is zero.

5YS_TERMINATE termination exception. Signalled when a process
is to be terminated.

SYS_SHUT_OFF system shut off exception. When the system
13 to be shut off, this exception is

signalled to every process to save the
current state. -

SI5_POWER ON system power on exception. After the system
is powared on, this exception is signalled
tO avery process to continue where it
‘left off when system was shut off. -

System Reserved Event Types
SYS_SON_TERM “son terminate” event type. This event is sent

to the father process when a son process makes
a TERMINATE PROCESS call.

Page 106

1-Mar-82 Operating System Reference Manual Confidential

ERBOB CODES
0 no error
1 invalid refnum
5 parity error

PROCESS MANAGEMENT

100 Specified process does not exist

101 Specified process is a system process

110 invalid priority specified (must be 1..255)

115 specified process is already suspended (Suspend_process)

120 specified process is already active (Activate Process)

125 sepcified process is already terminacing (Kill Process)

130 can not open program file

131 error while trying to read program file

132 invalid preogram file (not executable)

133 cannot make process stack for new process

134 cannot wmake process syslocal for new process

135 cannot get a PCB for the new process

136 cannot get up commynication channel for new process

137 program uses an invalid intripnsic unit (either names
do not agree, or unit is not intrinsic)

138 cannot access prograam file during lecading

139 cammot get a PLCB (program load control block) for
program——cut of sysglobal space

140 program uses an invalid shared segment (either names
do not agree, or segment is mot in Intrinsic.Lib)

141 cannot access a shared library file while loading

EXCEPTION MANAGEMENT

201 uo such exception name declared

202 no space left in the gystem data area for declare_execp_hdl
or signal excep.

MEMORY MANAGEMENT

301 input refnum is invalid

302 input ldsn value is invalid

303 no data segment bound to an ldsn when there should be
304 data segment bound to an ldsn when it shouldn’t be
305 data segment already bound to an ldsn

306 data segment too large

307 input data segment path name is invalid

308 data segment already exists

309 ingufficient disk space for data segment

310 An invalid size has been specified

memory size <= @
memory size of shared data segment > 128K
disk size < 0

. Page 107

l1=Mar=82

Operating System Reference Manual Confidential

EVENT MANAGEMENT

401
402
403
404

410
411

412
414
415
420

621

422
423

424
425
430
431

440

invalid eveat channel name passed to make eveat chp:
empty string or string longer than 16 characters

no space left in system global data area for open_event_chn
no space left in gystem local data area for open_event_chn
Non-block structured device specified in pathname to
make event chn, kill event_chmn, or cpen_event_chn
attempt to open a local event channel to send

attempt to open an event chaonel to receive when event
channel already has a receiver

calling process has already opened this channel to send
or receive

attempt to open channel that is being killed

varning: wrong number of bytes {n channel when open
attempt to wait on a channel that the calling process

did not open

wait event_chn returns while waiting on an empty channel
because a sender process was not able to successfully
complete sending an event.

attempt to call wait_event_chn oun an empty event-call
chaonel

cannot find corresponding event channel after being
blocked (wait_event_chn)

the actual amount of data returned while reading an event
from a channel i3 not the same as the size of an event
block in wait_event_chn (probebly disk I/0 failure)

event channel empty after being unblocked (wait_event_chn)
attempt to send to a channel which the calling process
does not have open

the actual amount of data transferred while writing an
event to a channel is not the sawe as the size of an
event block in send event_chn (disk is probably full)
warning: wrong number of bytes in channel when

Info Event Chn called

TWIGGY DISK ERRORS

611
612

613
6la

TIME MANAGEMENT
630

635

unexpected interrupt from drive 2
unexpected interrupt from drive 1
illegal disk address or transfer lemgth
no disk present in drive

the time passed to delay_time, comvert_time, or

send_event_chn is such that the year is less than 1890
or greater than 2069.

process got unblocked prematurely due to process
termination (delay_time)

Page 108

l=Mar-82 Operating System Reference Manual Confidential

636 timer request did not complete successfully in delay_time
638 the time passed to delay time or send event_chn is more
than 230 days from the current GMT time
RS=232
640 RS5-232 driver called with wrong version mumber
641 RES-232 read or wrlite initiated with illegal parameter
643 Unexpected RS-232 interrupt
644 Illegal refnum used to call T DISABLE from within RS=232 driver
645 Illegal refnum used to ¢all T RE ENABLE from within RS=232 driver
646 No memcry available to initialize R5-232
647 Unexpected R5=232 timer interrupt
648 Attempt to send unpermitted command to serial controller card
STARTUP
700 Mismatch between loader version mumber (in 0S.OBJ) and
- operating system version mumbetr (in SYSTEM.0S.0QBJ)
701 0S exhausted its internal space during startup
702 Cannot make system process
703 Cannot kill pseudo=outer process
704 Cannot create driver
705 Cannot program NMI key
706 Cannot (soft) initialize Twiggy
707 Cannot (soft) initialize the file system volume
708 Profile not readable
FILE SYSTEM
VmStuff:
801 IoResult © 0 on I/0 using the Monitor (LISAIOD)
802 Asynchronous I/O request not completed successfully
806 Page specified is out of range (TFDM)
809 Invalid arguments (pege, address, offset, or count) (VM)
816 Not enough sysglobal space for file system buffers (initqvm)
819 Bad device number (IC_INIT)
820 No space in sysglobal for asynchronous request list
821 Already initialized I/0 for this device
822 Bad device mumber (IO_DISINIT)
SFilelO:
825 Error in parameter values (Allocate)
826 No more voom to allocate pages om device
828 Error in parameter values (Deallocate)
829 Partial deallocation only (ran into umallocated region)
835 s=file oumber < 0 or > maxfiles (illegal value) (SList_IO)
837 Unallocated s~file or I/0 ervor (FMap_Mgr)
8138 Map overflow: s—file too large
841 Unallocated s-file or I/0 error (Get_PSize)
843 Bequested exact fit, but one couldn’t be providea (AppendPages)
847 Requested transfer count is <= 0 (Datal0)
848 End~of-file encountered
849 Invalid page or offset value in parameter list
852 Bad unit number (FlushFS)

Page 109

1=Mar=-82 Operating Systam Reference Mamual Confidential

BS54 No free slots in s-list directory (toco many s—files) (New SFile)
855 No available disk space for file hints
856 Device not mounted
857 Empty, locked, or imvalid s=file (Kill SFile)
861 Relative page is beyond PEOF (bad parameter value) (AbsPage)
864 No sysglobal space for volume !itmap (Real Mount, Real Unmount)
866 Wrong FS version or not a valid Lisa FS volume
867 Bad unit oumber (Real_ Mount, Real Unmount)
868 Bad unit nuwmber (Def Mounl:, Def Unmunl:)
869 Unit already mounted (mount)/no unit mounted (unmount)
870 No sysglobal space for DCB or MDDF (mount)
FS Primitives:
771 Parameter not a valid s=file ID (Open_SFile)
872 No sysglobal space for s=file control block
873 Specified file 1is already open for private access
874 Device not mounted
875 Invalid s-file ID or s-file control block (Close SFile)
879 Actempt to postion past LEOF (Direcc_IQ)
881 Attempt to read empty file (Fileld)
882 No space on wolume for new data page of file
883 Attempt to read past LEOF
884 Not first auto-allocation, but file was empty
885 Could nor update filesize hints after a write (fileio)
887 Catalog pointer does not indicate a catalog (bad parameter)
888 Entry not found in catalog (Lookup_by_ename)
890 Entry by that name already exists (Make Entry)
891 Catalog is full, or was not as catalog
892 Illegal name for an entry
894 Entry not found, or not a catalog (Kill Entry)
895 Invalid entry name (kill entry)
896 Safety switch is on——cannot kill entry (kill entry)
FS_Inice:
897 Invalid bootdev value
FS_Interface:
921 Pathname invalid or no such device (Make File)
922 Invalid label size (Make] File)
926 Pathname invalid or no such device (Make Pipe)
927 Invalid label size (Make_Pipe)
941 Pathname invalid or no such device (Kill Object)
946 Pathname invalid or no such device (Openm)
947 Not enough space in syslocal for file system refdb
948 Entry not found in specified catalog (Open)
949 Private access not allowed if file already open shared
950 Pipe already in use, requested access not possible
951 File is already opened in private mode (open)
952 Bad refnum (Close_Object)
954 Bad refnum (Read_data)
955 Read access not allowed to specified object
956 Attempt to position FMARK past LEOF not allowed
957 Negative request count is illegal (read_data)
958 Non=sequential access is not allowed (read data)
959 System rescurces exhausted
960 Error writing to pipe while an unsatisfied read was pending
961 Bad refnum (write data)

Page 110

1-Mar—-82

962
963
964
965
966
967
968
971
972
974
977
978
979
981
982
983
985
986
987
988
989
990
999

1021
1022
1023
1031
1032
1033
1041
1042
1043
1051
1052
1061
1062
1071
1091
1092
1121
1128
1196
1197
1198
119¢

Operating System Reference Manual Confidential

No WRITE or APPEND access allowed

Attempt to position FMARK too far past LEOF

Append access not allowed in absolute mode

Append access not allowed in relative mode

Internal inconsistency of FMARK and LEOF (warning)
Non=sequential access is not allowed (write data)

Bad refnum (Flush) -

Pathname invalid or no such device (Lookup)

Entry not fouad in specified catalog

Bad refnum (Info)

Bad refnum (allocate)

Page count is non-positive (allocate)

Not a block structured device (allocate) -

Bad refoum (Truncate)

No space has been allocated for specified file

Not a block structured device (truncate)}

Bad refnum (Compact)

No space has been allocated for specified file

Not a block structured device (compact)

Bad refnum (Flush Pipe)

Caller is not a reader of the pipe

Not a block structured device (flush pipe)

Agynchronous read was unblocked before it was satisfied.
This may occur during process termination.

Pathname invalid or no such entry (Rename: Entry)

No such entry found (rename entry)

Invalid newname, check for "=’ in string (rename_entry)
Fathname invalid or mo such entry (Read Label)

Invalid tramsfer count (read_label)

Nop such entry found (read_label)

Pathname invalid or no such entry (Write Label)

Invalid transfer count (write label)

No such entry found (write label)

No device or volume by that name (mount)

A volume is already mounted on device

No device or volume by that name (Unmount)}

No volume is mounted om device

Not a valid or mounted volume for working directory
Pathname invalid or no such entry (Set_Safety)

No guch entry found (set_safety)

Invalid device, not mounted, or not a catalog (reset_catalog)
Invalid pathname, device, or volume not mounted (get_dev_name)
Scmething is still open on disk——cannot unmount (real unmount)
Volume 1s not formatted or cannot be read (def mount)
Negative request count is illegal (write data)

Function or procedure is not yet implemented

The pathname error codes (921, 926, 941, %46, and 971) often mean that
*he volume specified in the pathname is not mounted. If error 966 occurs

while writing a file using the FTP utility, you probably ran out of space
on the destination volume.

“Page 111

1-Mar=82

0S LOADER DIAGNOSTICS
Error Message

FILE SYSTEM VERSION MISMATCH
FILE SYSTEM CORRUPT
MEMORY EXHAUST

SYSTEM CODE FILE NOT FOUND
SYSTEM CONFIGURATION FILE NOT FOUND
BOOT DEVICE READ FAILED

PROGRAM NOT EXECUTABLE
CODE FILE CORRUPT

TOO MANY 0S SEGMENTS
UNKNOWN BOOT ERROR

Operating System Reference Manual

Confidential

Cause or Description

When booting from the Twiggy

When booting from the Twiggy

You forgot to rum SETSP, or used

an incorrect value

Cannot find SYSTEM.0S.0BJ

Nor does it existc yet

loResult was not 0 for whatever reason
while trying to read SYSTEM.0S.0BJ
Refers to SYSTEM.0S.0OBJ

Refers to SYSTEM.0S.0RJ

—FINIS =—

Page 112

